Inflammatory seborrheic keratosis resolution after hyperbaric oxygen therapy: Case presentation and pathophysiology review


Submitted: 30 August 2020
Accepted: 2 October 2020
Published: 18 March 2021
Abstract Views: 3865
PDF: 620
HTML: 25
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Karin Elman-Shina Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel. https://orcid.org/0000-0003-4369-3014
  • Monica Elman Elman Dermatology and Laser Clinics, Tel Aviv, Israel.
  • Shai Efrati Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.

Seborrheic keratosis (SK) is a common epidermal tumor, consisting of a benign proliferation of immature keratinocytes. The natural history of SK is a slow progression over time and complete remission is not expected. The article presents the first case of a complete resolution of a large (2.5 cm diameter) SK lesion after hyperbaric oxygen therapy (HBOT). In addition to the case presentation, the pathophysiology of SK and the potential beneficial physiological effects of HBOT are reviewed and discussed.


Hafner, C. and T. Vogt, Seborrheic keratosis. J Dtsch Dermatol Ges, 2008. 6(8): p. 664-77. DOI: https://doi.org/10.1111/j.1610-0387.2008.06788.x

Schlesinger, T.E. and C. Favre, Enhancing Outcomes in Seborrheic Keratosis: Using a Novel Treatment Solution. J Drugs Dermatol, 2019. 18(7): p. s178-182.

Culbertson, G.R., 532-nm diode laser treatment of seborrheic keratoses with color enhancement. Dermatol Surg, 2008. 34(4): p. 525-8; discussion 528. DOI: https://doi.org/10.1111/j.1524-4725.2007.34098.x

Kim, Y.K., et al., Therapeutic efficacy of long-pulsed 755-nm alexandrite laser for seborrheic keratoses. J Eur Acad Dermatol Venereol, 2014. 28(8): p. 1007-11. DOI: https://doi.org/10.1111/jdv.12231

Polder, K.D., et al., Laser eradication of pigmented lesions: a review. Dermatol Surg, 2011. 37(5): p. 572-95. DOI: https://doi.org/10.1111/j.1524-4725.2011.01971.x

Cheong, K.A. and A.Y. Lee, Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites. Acta Derm Venereol, 2020. DOI: https://doi.org/10.2340/00015555-3473

Li, Y., et al., Overexpression of Amyloid Precursor Protein Promotes the Onset of Seborrhoeic Keratosis and is Related to Skin Ageing. Acta Derm Venereol, 2018. 98(6): p. 594-600. DOI: https://doi.org/10.2340/00015555-2911

Wollina, U., Seborrheic Keratoses - The Most Common Benign Skin Tumor of Humans. Clinical presentation and an update on pathogenesis and treatment options. Open Access Maced J Med Sci, 2018. 6(11): p. 2270-2275. DOI: https://doi.org/10.3889/oamjms.2018.460

Tibolla, G., et al., Increased atherosclerosis and vascular inflammation in APP transgenic mice with apolipoprotein E deficiency. Atherosclerosis, 2010. 210(1): p. 78-87. DOI: https://doi.org/10.1016/j.atherosclerosis.2009.10.040

Schulte, E.C., et al., Rare variants in beta-Amyloid precursor protein (APP) and Parkinson's disease. Eur J Hum Genet, 2015. 23(10): p. 1328-33. DOI: https://doi.org/10.1038/ejhg.2014.300

Yoshida, T., et al., The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest, 2005. 115(10): p. 2793-800. DOI: https://doi.org/10.1172/JCI24635

Cimino, F., et al., Pulsed high oxygen induces a hypoxic-like response in human umbilical endothelial cells and in humans. J Appl Physiol (1985), 2012. 113(11): p. 1684-9. DOI: https://doi.org/10.1152/japplphysiol.00922.2012

Sunkari, V.G., et al., Hyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic mice. Wound Repair Regen, 2015. 23(1): p. 98-103. DOI: https://doi.org/10.1111/wrr.12253

Milovanova, T.N., et al., Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo. J Appl Physiol (1985), 2009. 106(2): p. 711-28. DOI: https://doi.org/10.1152/japplphysiol.91054.2008

Yang, Y., et al., Hyperbaric oxygen promotes neural stem cell proliferation by activating vascular endothelial growth factor/extracellular signal-regulated kinase signaling after traumatic brain injury. Neuroreport, 2017. 28(18): p. 1232-1238. DOI: https://doi.org/10.1097/WNR.0000000000000901

Hadanny, A. and S. Efrati, The Hyperoxic-Hypoxic Paradox. Biomolecules, 2020. 10(6). DOI: https://doi.org/10.3390/biom10060958

Dimitrijevich, S.D., et al., Effect of hyperbaric oxygen on human skin cells in culture and in human dermal and skin equivalents. Wound Repair Regen, 1999. 7(1): p. 53-64. DOI: https://doi.org/10.1046/j.1524-475x.1999.00053.x

Shapira, R., S. Efrati, and U. Ashery, Hyperbaric oxygen therapy as a new treatment approach for Alzheimer's disease. Neural Regen Res, 2018. 13(5): p. 817-818. DOI: https://doi.org/10.4103/1673-5374.232475

Fuller, A.M., et al., Hyperbaric oxygen preconditioning protects skin from UV-A damage. Cell Stress Chaperones, 2013. 18(1): p. 97-107. DOI: https://doi.org/10.1007/s12192-012-0362-2

Elman-Shina, K., Elman, M. ., & Efrati, S. . (2021). Inflammatory seborrheic keratosis resolution after hyperbaric oxygen therapy: Case presentation and pathophysiology review. Dermatology Reports, 13(1). https://doi.org/10.4081/dr.2021.8871

Downloads

Download data is not yet available.

Citations