Engineering a dynamic model of the alveolar interface for the study of aerosol deposition
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Nano and micro particles are widely used in industrial, household and medicinal applications. To understand the interaction between particles and epithelial cells, we developed a dynamic model of the alveolar interface. This system, named DALI (Dynamic Model for the ALveolar Interface), is a modular bioreactor composed of two chambers divided by a porous membrane where epithelial lung cells are seeded. The membrane is the support of the alveolar barrier that separates the two compartments of the alveolus: the air and blood side. The system integrates the following elements: i) Air/Liquid interface, thanks to the two chambers divided by the membrane: ii) Cell culture media flow, thanks to the presence of a peristaltic pump; iii) Lung breathing motion, thanks to an airflow that allows the stretching of the membrane; iv) Aerosol deposition system, to study the effects of drug efficacy or particle toxicity on the epithelial layer; v) Quartz Crystal Microbalance, to quantify the amount of aerosolized particles.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.