Long-term earthquake forecasts based on the epidemic-type aftershock sequence (ETAS) model for short-term clustering


39
2
27
0
Smart Citations
39
2
27
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Authors

  • Jiancang Zhuang Institute of Statistical Mathematics and Department of Statistical Science, the Graduate University for Advanced Studies, Tokyo, Japan.
Based on the ETAS (epidemic-type aftershock sequence) model, which is used for describing the features of short-term clustering of earthquake occurrence, this paper presents some theories and techniques related to evaluating the probability distribution of the maximum magnitude in a given space-time window, where the Gutenberg-Richter law for earthquake magnitude distribution cannot be directly applied. It is seen that the distribution of the maximum magnitude in a given space-time volume is determined in the longterm by the background seismicity rate and the magnitude distribution of the largest events in each earthquake cluster. The techniques introduced were applied to the seismicity in the Japan region in the period from 1926 to 2009. It was found that the regions most likely to have big earthquakes are along the Tohoku (northeastern Japan) Arc and the Kuril Arc, both with much higher probabilities than the offshore Nankai and Tokai regions.