Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress

Submitted: 26 August 2009
Accepted: 3 December 2009
Published: 4 January 2010
Abstract Views: 7137
PDF: 2726
HTML: 8812
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Salicylic acid (SA), a naturally occurring plant hormone, is an important signal molecule known to have diverse effects on biotic and abiotic stress tolerance. Its growth-promoting effect on various plants has been shown, but the information on the response of mungbean, an important leguminous plant, to SA application under salt stress is limited. Mungbean (Vigna radiata L.) cultivar Pusa Vishal plants grown with 50 mM NaCl were sprayed with 0.1, 0.5, or 1.0 mM SA and basic physiological processes were studied to substantiate our understanding of their role in tolerance to salinity-induced oxidative stress and how much such processes are induced by SA application. Treatment of plants with 0.5 mM SA resulted in a maximum decrease in the content of Na+, Cl-, H2O2, and thiobarbituric acid reactive substances (TBARS), and electrolyte leakage under saline conditions compared to the control. In contrast, this treatment increased N, P, K, and Ca content, activity of antioxidant enzymes, glutathione content, photosynthesis, and yield maximally under nonsaline and saline conditions. The application of higher concentration of SA (1.0 mM) either proved inhibitory or was of no additional benefit. It was concluded that 0.5 mM SA alleviates salinity-inhibited photosynthesis and yield through a decrease in Na+, Cl-, H2O2, and TBARS content, and electrolyte leakage, and an increase in N, P, K, and Ca content, activity of antioxidant enzymes, and glutathione content.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Supporting Agencies

How to Cite

Khan, N., Syeed, S., Masood, A., Nazar, R., & Iqbal, N. (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1(1), e1. https://doi.org/10.4081/pb.2010.e1