Patients with acute leukemia generally exhibit activation of the coagulation system, and individuals with acute promyelocytic leukemia (APL) particularly are at high risk for severe thrombotic and bleeding complications due to hemostatic changes.

A retrospective study reported on the hemorrhagic and thrombotic events at presentation and during induction in 34 consecutive APL patients treated in a single referral center. The most consistent hemostatic abnormality was decreased fibrinogen level (<150 mg/dL) found in 21 patients (61%), life-threatening bleeding manifestations occurred in 10 patients (29%). However, by a multivariate analysis, severe bleeding complications did not correlate with hemostatic parameters but did correlate with white cell count at presentation. Four patients (12%) had severe thrombotic events, two cerebral sagittal sinus thrombosis, one pulmonary embolism, and one subclavian vein thrombosis. Two other patients had pseudotumor cerebri. Three out of six patients with thrombotic events were found to have thrombophilia. Thus the hemostatic parameters were not helpful in predicting neither hemorrhage nor thrombosis in APL patients, while results may suggest an association between thrombophilia and thrombosis in APL patients.

Cell surface proteins that are capable of procoagulant effect include tissue factor (TF) and protease-activated receptor-1 (PAR-1). Cell surface proteins that have either an anti-coagulant or a profibrinolytic effect include tissue factor pathway inhibitor (TFPI) and urokinase plasminogen activator receptor (uPAR). uPAR is a specific cellular receptor to the urokinase plasminogen activator (uPA) resulting in the enhanced activation of plasminogen. Over-expression of TF, cancer procoagulant, and acquired activated protein C resistance have been argued as main factors for the coagulopathy in malignant disorders.

Expression of coagulation proteins on leukemic blast membranes can determine the local hemostatic balance and may correlate with thrombotic manifestations.

Several groups evaluated cell surface expression of TF alone on leukemic cells. Lopez-Pedrera et al. studied by flow-cytometry the cell surface expression of both TF and uPAR in 26 acute leukemia patients. In that study, TF level was found to be high (>68%) in 2 out of 4 patients with AML-M3 and in all the 3 patients with AML-M5, whereas in patients with other subtypes of leukemia TF value was <16%. uPAR expression was high (92%) in one of the four AML-M3 patients and in one of the AML-M5 patients (70%); the other two AML-M5 patients were not evaluated. In the rest of the patients the uPAR expression was less than 17%.

In a recent study we have included 51 consecutive patients with newly diagnosed acute leukemia (25 AML-M0-2, 11 AML-M3, 6 AML-M4-5, 9 ALL), who were followed up prospectively for thrombotic manifestations during the first month since diagnosis. Thrombotic manifestations were present in 13 out of 51 (26%) patients: 6 out of 25 patients (24%) with AML-M0-2 and 7 out of 11 patients (64%) with
Acute Promyelocytic Leukemia

AML-M3.

In this study we evaluated the following, cell surface markers TF and PAR-1, TFPI, and uPAR. TM at high concentration. TF was found to be the dominant marker on the cell surface as compared to PAR-1, TFPI, uPAR, and thrombomodulin. These findings, in accordance with the good correlation found between TF cell surface expression and TF activity, support the assumption that the surface of the leukemic cells is procoagulant and may contribute to thrombotic manifestations. TF and uPAR were found to be the two dominant hemostatic proteins and significant statistical difference in the TF / uPAR ratio was revealed between the patients with a thrombotic event and the patients without a thrombotic event.

It is possible that the procoagulant profile of leukemic patients is determined by a combination of the plasmatic thrombophilic state and the cellular procoagulant state on leukemic cells. Endothelial cells and microparticles derived from platelets, endothelial cells and potentially from tumor cells may also contribute to the hemostatic balance.

References

RETNIOIC ACID MODULATION OF SYSTEMIC AND CELLULAR HEMOSTASIS ACTIVATION

Falanga A
Hematology-Oncology Department, Ospedali Riuniti Bergamo, Bergamo, Italy

Acute promyelocytic leukemia (APL) typically presents with a life-threatening hemorrhagic diathesis. Before the introduction of all-trans retinoic acid (ATRA), fatal hemorrhages by the APL-associated coagulopathy were a major cause of induction remission failure. The laboratory abnormalities of blood coagulation in patients with APL are compatible with the diagnosis of a syndrome of disseminated intravascular coagulation (DIC) The major determinants of the coagulopathy in APL are endogenous factors related to properties of the leukemic cell, including the expression of procoagulant factors, the expression of fibrinolytic and proteolytic properties, the increased capacity to adhere to the vascular endothelium, and the secretion of inflammatory cytokines [i.e. interleukin-1β (IL-1β) and tumor necrosis factor (TNF-α)], which in turn stimulate the prothrombotic activities of endothelial cells and leukocytes. ATRA can interfere with each of the principal hemostatic properties of the leukemic cell. Indeed, it abolishes the APL cell procoagulant activities, in parallel to the induction of cellular differentiation. This effect occurs in vivo, in the bone marrow of APL patients given ATRA for remission-induction therapy, and is associate with the improvement of the coagulation parameters in the same subjects.

ATRA decreases the fibrinolytic activity of APL cells by inducing the synthesis of plasminogen activator inhibitors (PAI), and the inhibiting annexin II synthesis, which both contribute to the down-regulation of the receptor-bound plasminogen activators (PA) activity. However, down-regulation of APL cell fibrinolytic activity is not associated with changes in the systemic fibrinolytic activity in APL patients treated with ATRA.

ATRA also interferes with the hemostatic properties of normal cells, including endothelial cells and monocytes. It inhibits the procoagulant features of the endothelium induced by TNF-α and IL-1β, i.e. the upregulation of the potent procoagulant tissue factor (TF) and the downregulation of the thrombomodulin-dependent coagulation inhibition system. In addition, it directly stimulates thrombomodulin expression by endothelial cells. Further, differently from APL cells, ATRA increases the fibrinolytic activity of endothelial cells, by stimulating the production of t-PA. These effects are very important, as they protect the endothelium against fibrin deposition. Finally, ATRA modulates several functions of mononuclear phagocytes, including the inhibition of the expression of TF by these cells.

The advent of ATRA for curing APL has profoundly modified the perspectives of the coagulopathy management, by substantially improving this complication in parallel to the treatment of the underlying disease. Inspite of that, early deaths from bleeding still remain significant and further research is required.
Six patients with acute promyelocytic leukemia (APL) in overt relapse (2 patients in first relapse, 2 patients in second relapse after autologous stem cell transplantation) and 2 patients at diagnosis uneligible for conventional treatment for age or concomitant morbidities were treated with ATRA 45mg/m² and gemtuzumab ozogamycin (GO) at a median dose of 12.5 mg (range 5-15) for a median of 2 cycles (range 1-8). Patients were aged 65y (20-81) and there were 3 males and 3 females. Median WBC count at study entry was 7.4 ×10⁹/mm³ (range 2.4-24) and median percentage of promyelocytes count in peripheral blood was 48.5% (4-96), in the control group WBC was 2.5×10⁹/mm³ (range 0.5-100) and the percentage of promyelocytes was 64% (5-56). Patients were matched for age, sex, risk category with patients with APL included in GIMEMA protocols for APL.

Coagulation parameters included prothrombin time (PT), partial activated thromboplastin time (PTT), international normalized ratio (INR), fibrinogen, D-dimer and ATIII. WBC and platelet count was also monitored and compared in the two groups. All data were analyzed before treatment and after the first administration of GO. From the analysis of the data in both groups from diagnosis to day 21 after the end of chemotherapy the following differences were observed: D-dimer was significantly higher in control patients at diagnosis (6420 vs 2172; p=0.02) then at day +3 aPTT was prolonged in patients treated with GO although not significantly (28.75 vs 25.7; p=0.06). D-dimer at day+7 was significantly higher in patients treated with GO (4660 vs 864; p=0.05) and finally at day +11 fibrinogen was significantly reduced in patients treated with GO (132.5 vs 396; p=0.01). At day +17 and 21 after chemotherapy no differences were observed between the two groups and all laboratory parameters were within the normal range. Among patients treated with GO we observed 3 early fatal central nervous system (CNS) hemorrhages (50%) thus were not evaluable for response while no fatalities related to hemorrhage were observed in the control group. 1 patient in the GO group also developed CNS hemorrhage and died 2 months after APL relapse. Overall 1 patient only in the GO group achieved complete remission. GO + ATRA has been successfully used in molecular relapse of APL. In this setting the modifications of coagulative parameters were not addressed because the presence only of a molecular relapse was not sufficient to induce the classic coagulopathy of APL. In our series we administered GO in combination with ATRA to patients with more advanced disease or at diagnosis in the presence of other comorbidities and we did not observe striking differences in the evolution of coagulopathy except for single modifications at different time points showing a trend for a slower correction of coagulopathy after GO+ATRA. Interestingly there was an excess of early deaths from CNS hemorrhage in the GO group and this should be further clarified.

ATRA has ameliorated the bleeding syndrome in APL patients, but there is increasing concern that it may exacerbate thrombotic complications. These complications are very rare in other AML subtypes and the incidence of predisposition to thrombosis due to ATRA is at present unknown. We report our experience on the occurrence of thrombotic event in APL patients treated with ATRA-based protocols. From 8/1993 to 1/2004, 90 APL patients were enrolled in the AIDA and AIDA2000 protocols at our Institution. Among them, 11 patients developed a thrombotic complication (5 males and 6 females, median age 55 years, range 32 -71); according to FAB criteria, 8 patients were classic M3 and 3 patients M3 variant. Predictive relapse risk score identified 6 patients as high-risk, 2 patients as intermediate and 3 patients as low-risk. Median WBC count at diagnosis was 20.5×10⁹/L (range 1.2-56): the type of transcript was bcr3 in 9 patients and bcr1 in 2 patients. Eight thrombotic events (4 myocardial infarctions, 2 right intraventricular thrombi and 2 deep vein thromboses) were recorded during induction phase, while 3 events (deep vein thromboses) occurred during consolidation therapy. No association was observed with ATRA syndrome or haemorrhagic diathesis at presentation, whereas 8/11 patients showed the presence of FLT3-ITD at diagnosis. Phenotypic characterization revealed a classic panel in all patients (CD13+, CD33+, CD9+, MPO+), but a peculiar positivity for CD2 was seen in 7 patients, for CD15 in 3 patients and for both antigens in 1 patient. CD2 antigen is normally found on T cells and mediates adhesion to CD58: it is possible that this aberrant expression on the surface of APL cells play a
Acute Promyelocytic Leukemia

role in the leuko-agglutination, contributing to thromboses in peculiar site, such as right ventricle. In the 3 patients CD2 negative, we found a similar aberrant expression of CD15, that has been reported in literature as an antigen normally modulated by ATRA, together with other adhesion molecules. The association between CD2 expression, short type of bcr transcript and FLT3 abnormalities has been also confirmed. In conclusion, we suggest a possible and crucial role of aberrant features at diagnosis, such as phenotype and molecular abnormalities, to explain the high thrombotic incidence in APL patients treated with ATRA.

C03
INFLUENCE OF INHERITED THROMBOPHILIA ON NATURAL HISTORY OF ACUTE PROMYELOCYTIC LEUKEMIA

Melillo L, Grandone E, Cascavilla N, Cappucci F, Colaluzzo D
Hematology and Stem Cell Unit, Atherosclerosis and Thrombosis Unit, Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy

Background. Hemorrhage is a very early event and a major cause of death in patients with acute promyelocytic leukemia (APL). ATRA corrects the hyperactivity of the coagulation and fibrinolytic system and leads to a rapid amelioration of the bleeding. However ATRA may exacerbate thrombotic complications, interfering with key prothrombotic properties of leukemic cells. The influence of a inherited predisposition to thrombosis in APL is presently undefined. Aim of the study was to determine the prevalence of TE and to detect any association of TE with the presence of congenital or acquired prothrombotic factors in adults affected by APL.

Methods. From June 1999 to June 2005 we prospectively evaluated the clinical relevance of genetic and acquired risk factors for thrombotic events (TE) in fourteen APL out of 114 adult patients with acute leukemia (AL) at diagnosis. Median age was 39 years (range 16-62 years). They were treated according the AIDA GIMEMA protocols. No patients had disease hepatic failure or received tranexamic acid, heparin or any other anticoagulant therapy. We have determined at diagnosis the frequency of the most common genetic markers of a prothrombotic tendency, namely Factor V G1691A mutation (FV-L), prothrombin G20210A (FII 20210) and the presence of Thermolabile variant of methylene tetrahydrofolate reductase (MTHFR C677T variant). In addition Protein C (PC), Protein S (PS) and ATIII deficiency, antidiolipin antibodies (ACL) and lupus anticoagulant (LA) were evaluated.

Results. The allelic frequency of FV-L, FII20210 and MTHFR C677T variant was 0%, 0% and 14.3% respectively. The prevalence of these mutations was not statistically different from that observed in the general population from the same ethnic background. Six patients (42.8%) had a single defect, 4 (28.6%) had double defects. Seven out of 14 patients (50%) had HCY (>95 above reference values). Four patients developed TE (28.6 versus 9.6% of AL cases, p 0.01), three out of them in the first month of follow-up: a deep vein thrombosis in two cases (presenting HCY and PC deficiency plus LA positivity, respectively) and thrombotic occlusion of an artero-venous fistula in one case with HCY, LA, PC deficiency and MTHFR C677T variant homozygosis. Late TE were represented by a subclavian vein TE and was related to the presence of a central venous line in a patient in complete remission (CR) with MTHFR C677T variant homozygosis. All diagnosis were confirmed by pulse-wave color-Doppler sonography. The patients with AV fistula thrombosis died at +4 d for CNS hemorrhage, the others are alive in molecular remission at +12, +30 and +52 months, respectively.

Conclusions. The prevalence of TE is exceedingly high in adults APL compared with other AML patients. Patients with thrombophilic defects appear to be a higher risk of TE. Although 2 out of 4 TE occurred amongst patients with MTHFR C677T variant homozygosis, this study, due to the relatively small number of analyzed APL patients, was unable to show a predictive value for TE of inherited thrombophilic defects.

C04a
HEMOSTASIS ALTERATIONS IN 90 CASES WITH DE NOVO ACUTE PROMYELOCYTIC LEUKEMIA TREATED WITH ATRA

1Colita Clinical Hospital/UMF Carol Davila, Bucharest, Romania; 2Fundeni Clinical Institute, Bucharest, Romania

Background. APL is a distinct subtype of acute promyelocytic leukemia characterized by complex alteration of hemostasis combining thrombocytopenia and coagulopathy developed through several mechanisms: disseminated intravascular coagulation (DIC), fibrinolysis, proteolysis.

Aims. Follow-up of hemostasis during induction therapy with ATRA+/-chemotherapy.

Methods. We analyzed 90 cases with de novo APL concerning outcome and evolution of coagulopathy. Hemostasis was explored by various methods: clinical, platelet count, PTa, PT, ATIII, fibrinogenemia, D-Dimer, D-dimers, soluble fibrin monomers, ATIII, morphologic assessment of the presence of schysocytes, DIC score according to ISHT.

Results. Hemorrhage was present in 82 patients (91%) and severe coagulopathy was found in 30 cases (33.3%) at onset. The severity of alterations of hemostasis was correlated with high numbers of leucocytes and circulating leukemic cells. The main mechanism of coagulopathy was DIC present in 83.3% of cases, including 12 cases with overt DIC. Remission rate was 82.2%. Treatment with ATRA was followed by rapid improvement of hemostasis. Despite this evolution, during the induction treatment we found that 75.3% of patients had alterations of hemostasis and 52.2% presented bleeding. This evolution was correlated hyperleucocytosis and introduction of chemotherapy. The major cause of early deaths was cerebral hemorrhage. Anticoagulant therapy had no significant impact in regard to the evolution of coagulopathy.
COMPARATIVE EVOLUTION OF HEMOSTASIS IN ACUTE PROMYELOCYTIC LEUKEMIA AT ONSET AND IN RELAPSE

‘Coltea Clinical Hospital/UMF Carol Davila, Bucharest; ‘Fundeni Clinical Institute, Bucharest, Romania

APL is a distinct subtype of acute myeloid leukemia characterized by the severe alteration of hemostasis at the onset, that is accentuated after the introduction of chemotherapy. Modern treatment with retinoic acid has permitted a better management of APL related coagulopathy. This study evaluates the hemostatic parameters in 31 APL patients with relapse. Clinical examination showed a greater incidence of severe hemorrhagic syndrome at onset compared with the moment of relapse. Biological data showed superior values of hemoglobin, circulating leukemia cells and platelets at relapse compared with the initial data. At the same time, coagulation parameters (fibrinogen, APTT, AP, TQ, TMF, FDP) where less altered at relapse than at onset. On the other hand, the incidence of severe hemorrhagic complications is greater during the treatment of relapse with 25.8% deaths caused by cerebral hemorrhage. Coagulation data showed the predominence of severe coagulopathy and a slower normalization of coagulation parameters and platelets at relapse. This data suggest the possible action of different mechanisms in the pathogenesis of APL related coagulopathy at onset and during relapse, that might by an explanation for the severe course of coagulopathy at relapse.

IN VITRO AND IN VIVO MODELS

RETINOIC ACID-DEPENDENT GENE TRANSACTIVATION BY PML-RAR WITHOUT DIRECT DNA-BINDING

Dept Hematology Erasmus University Rotterdam and UMCN St Radboud Nijmegen, The Netherlands

Ligated PML-RARα induces ID1 and ID2 expression

In a search for PML-RARα target genes, we found that retinoic acid rapidly induces ID1 and ID2 expression, both in the acute promyelocytic leukemia (APL) cell line NB4 as well as in primary APL patient cells. ID proteins act as negative regulators of basic-helix-loop-helix transcription factors, and are implicated in the regulation of various differentiation processes, including hematopoiesis. To test the relevance of this upregulation, ID1 and ID2 were overexpressed in NB4 cells using retroviral vectors. Overexpression inhibited proliferation and induced a G0/G1 accumulation, indicating that ID1 and ID2 may be biologically important for the retinoic acid response in APL cells.

PML-RARα transactivates ID1 and ID2 without direct DNA-binding

As ID1 and ID2 were induced within 30 minutes after stimulation with retinoic acid, we studied wether these genes are direct retinoic acid targets. ID1 and ID2 mRNAs were rapidly upregulated, both in the presence and absence of cycloheximide, suggesting that these genes were directly transactivated without intermediate protein expression. We cloned the 5’ upstream ID1 and ID2 promoters into a luciferase construct for transactivation studies. Surprisingly, we found that the promoters were transactivated by PML-RARα in a retinoic acid dependent manner, but not by unrearranged RARα/RXR. To identify the regulatory DNA sequences through which the induction by PML-RARα was mediated, several deletion mutants were constructed. Deletion mutants that lacked all (even remotely) consensus retinoic acid response elements were still transactivated by PML-RARα. To test whether PML-RARα might transactivate the ID1 and ID2 promoters without directly binding to the DNA, we used a PML-RARα construct in which the DNA binding domain was deleted (PML-RAR/ΔR). While we confirmed that PML-RAR/ΔR was unable to transactivate a promoter containing a well defined retinoic acid response element (β-RAR promoter), it could still transactivate the ID1 and ID2 promoters. This indicated that transactivation by PML-RARα occurred without direct binding of PML-RARα to the DNA. When the coiled-coil domain of PML-RARα was deleted (PML-RAR/ΔCC) transactivation was abolished. As the coiled-coil domain is involved in protein-protein interactions, this suggested that the transactivation of these genes is dependent on homodimerisation and/or interaction with other protein(s) mediated through the PML-part of the chimera. Further deletion and point mutants identified the site in the ID1 promoter that was necessary for PML-RARα mediated transactivation, showing that a CCAAT box (binding site for the transcription factor NFY) and two adjacent GC boxes (binding sites for SP1) were essential for transactivation. SP1 and NF-Y are rather ubiquitously expressed transcription factors that work in concert on many different promoters. NF-Y is a trimeric protein complex consisting of three subunits (NF-YA, NF-YB and NF-YC). Assembly of all three subunits is necessary for
DNA-binding and transactivation. When a dominant-negative form of NE-YA (NFYam29) was used, transactivation of the ID1 and the ID2 promoter by PML-RARα was abolished. To test wether PML-RAR could be recruited to the DNA through binding to either SP1 or one of the NFY subunits, we performed GST-pull down experiments. These showed that PML-RARα may bind to SP1, whereas no direct interaction with any of the NFY subunits was observed.

No repression of ID1 transcription in the absence of ligand

The effect of PML-RARα on the endogenous ID1 and ID2 genes was tested using a U937 cell line that is stably transfected with a Zn²⁺-inducible PML-RARα expression cassette (U937-R9, provided by Dr. Pelicci). In PML-RARα expressing U937 cells, ATRA strongly induced ID1 and ID2 mRNA and protein expression, contrary to U937 cells lacking PML-RARα. In the absence of ligand, DNA-bound PML-RARα recruits corepressors to the DNA resulting in silencing of the target gene. We tested whether PML-RARα expression would lead to active repression of the ID1 and ID2 genes. Induction of PML-RARα in U937 cells did not result in further down-regulation of the low levels ID1 or ID2 mRNA expression, measured by quantitative RT-PCR. In addition, when a large panel of different types of AML samples was tested for ID1 and ID2 expression, the AML-M3 cases did not stand out as a group with exceptionally low expression compared to other FAB-types. Together, this suggests that PML-RARα does not actively repress ID1 or ID2 gene expression in the absence of ligand. Therefore, the stimulatory effect of PML-RAR on ID1 and ID2 through this DNA-binding-independent mechanism may be involved in the induction of differentiation of APL cells upon exposure to retinoic acid, rather than in the transformation of the cells.

In Summary

Our data implicate that PML-RARα may interfere with the transcription of two classes of genes. The first class concerns genes that are regular targets of retinoid receptors, the second class consists of genes that are normally not regulated by retinoid receptors, but become retinoic acid responsive in the presence of the PML-RARα fusion protein.

TARGETING P73-P53AIP1 APOPTOTIC PATHWAY IN ACUTE PROMYELOCYTIC LEUKEMIA CELLS

Lunghi P,1 Costanzo A,2 Salvatore L,1 Noguera N,3 Tabilio A,4 Lo Coco F,3 Leverro M,3 Bonati A4

1 Department of Clinical Sciences, Section of Hemato-Oncology, University of Parma; 2 Department of Dermatology, University of Rome “Tor Vergata”; 3 Department of Biopathology, Section of Hematology, University of Rome “Tor Vergata”; 4 Department of Clinical and Experimental Medicine, Section of Hematology and Clinical Immunology, University of Perugia; Laboratory of Gene Expression, Fondazione Andrea Cesalpino, University of Rome “La Sapienza”, Italy

Summary

In this study we report that acute promyelocytic leukemia (APL) cells exploit the Ras-MAPK activation pathway to phosphorylate at Ser112 and to inactivate the pro-apoptotic protein Bad, delaying arsenic trioxide (ATO)-induced apoptosis. Both in APL cell line NB4 and in APL primary blasts, the inhibition of ERK1/2 and Bad phosphorylation by MEK1 inhibitors enhanced apoptosis in ATO-treated cells. We isolated an arsenic-resistant NB4 subline (NB4-As³) which showed stronger ERK1/2 activity (2.7 fold increase) and Bad phosphorylation (2.4 fold increase) compared to parental NB4 cells in response to ATO treatment. Upon ATO exposure, both NB4 and NB4-As³ cell lines doubled protein levels of the death antagonist Bcl-xl but the amount of free Bcl-xl that did not heterodimerize with Bad was 1.8 fold greater in NB4-As³ than in the parental line. MEK1 inhibitors dephosphorylated Bad and inhibited the ATO-induced increase of Bcl-xl, overcoming ATO resistance in NB4-As³.

We then studied the anti-leukemic mechanisms of MEK1 inhibitor + ATO by investigating p73-p53AIP1 apoptotic pathway. Combined treatment results in the induction of the p53AIP1 (p53-regulated Apoptosis-Inducing Protein 1) gene in NB4. We investigated the possible role of p73, a p53 paralog that has been shown to regulate several p53-target genes including p21, Bax and p53AIP1. We found that MEK1 inhibitors reduce the levels of dominant negative ΔN-p73 proteins and promote the accumulation of endogenous p73α through its transcriptional activation and its tyrosine phosphorylation, resulting in p21 up-regulation and significant cell growth inhibition. ATO reduces ΔN-p73 levels and promotes a p300-mediated acetylation of endogenous p73, thus favouring cell cycle arrest and apoptosis. Finally, the combined treatment with MEK1 inhibitors and ATO enhances the affinity of phospho-acetylated p73 for the p53AIP1 promoter in vivo, as determined by chromatin immunoprecipitation experiments, leading to p53AIP1 up-regulation and increased apoptosis. Together, these findings support a model in which the p73-p53AIP1 apoptotic pathway is potentiated by Bad dephosphorylation through the increased capacity of Bad, after MEK1 inhibition, to associate with Bcl-xl and Bcl-2. Dephosphorylated Bad displaces Bcl-2 from p53AIP1 and heterodimerizes with Bcl-2 (and with Bcl-xl), thereby blocking their anti-apoptotic function.

Introduction

Arsenic Trioxide (ATO) is considered the treatment of choice for patients with relapsed acute promyelocytic leukemia (APL), particularly in patients exposed to all-trans retinoic acid (ATRA) within the prior 12 months.¹ The mechanisms of action of ATO have been investigated both in vivo and in vitro: at low doses (0.1-0.25 µM) ATO induces a partial differentiation in APL cells through degradation of PML-RARα, while at higher doses (0.5-2 µM) this agent inhibits cell growth and induces apoptosis through both PML-RARα dependent and independent mechanisms with

Acute Promyelocytic Leukemia
According to recent laboratory studies, the blast cells of most acute myelogenous leukemias (AML) including APL show constitutive activation of extracellular signal-regulated kinases 1/2 (ERKs) as well as of the kinases immediately upstream of ERK, known as mitogen-activated protein (MAP)/ERK kinases (MEKs). Furthermore, we and others have demonstrated that down-modulation of MEK1 phosphorylation inhibits the proliferation and induces apoptosis of primary AML blasts. In this study, we aimed at investigating whether DNA content or induced by ATO in both cell lines (Figure 1a). Changes in mitochondrial transmembrane potential (ΔΨm) are a critical step in cells undergoing apoptosis, regardless of the death signal. Therefore we compared ΔΨm in ATO or PD+ATO treated cells by using a mitochondria-specific dye, MitoLight, which displays a green to red spectral shift proportional to ΔΨm. The combined treatment with PD184352 and ATO strikingly potentiated loss of ΔΨm induced by ATO in both cell lines (Figure 1b) indicating that the dual treatment affects the mitochondria apoptotic pathway.

Results and Discussion

MEK1 inhibition enhances ATO-mediated apoptosis both in NB4 and in NB4-AsR cells, and in fresh APL primary blasts

We studied the effect of MEK1 inhibitor, ATO, or both agents in combination on apoptosis in NB4, in NB4 ATO resistant (NB4-AsR) cell line produced in our laboratory and in fresh APL primary blasts from patients. After 72 h of treatment we observed that the combination of MEK1 inhibitors (PD 98059 40 μM or PD 184352 1 μM) with Arsenic Trioxide (ATO 1 μM) strikingly increased the percentage of sub-G1 apoptotic cells induced by ATO alone in both parental and NB4-AsR cells (Figure 1a). Changes in mitochondrial transmembrane potential (ΔΨm) are a critical step in cells undergoing apoptosis, regardless of the death signal. Therefore we compared ΔΨm in ATO or PD+ATO treated cells by using a mitochondria-specific dye, MitoLight, which displays a green to red spectral shift proportional to ΔΨm. The combined treatment with PD184352 and ATO strikingly potentiated loss of ΔΨm induced by ATO in both cell lines (Figure 1b) indicating that the dual treatment affects the mitochondria apoptotic pathway.

Similar results were observed with PD 98059 (data not shown). Finally, to characterize the pharmacologic interactions between PD184352 and ATO more rigorously and over a range of drugs concentrations, median dose effect analysis was used. When apoptosis by sub-G1 DNA content or annexin V/PI staining was measured after 48 h of drugs exposure, combination index (CI) values considerably less than 1.0 were obtained in arsenic-resistant and to a lesser extent in the parental NB4 cells, corresponding to highly synergistic interactions in both NB4-AsR cells and parental cells (Figure 1c). Thus, these agents appear to synergize for the induction of apoptosis primarily in arsenic resistant but also in parental NB4 cells. We next studied the apoptotic effect of the combined treatment in fresh APL primary blasts. Interestingly, the percentage of sub-G1 apoptotic cells in patients (cases # 1, # 2 and # 3) treated for 48 h with PD98059 40 μM and ATO at concentrations of 1 or 2 μM - concentrations that are usually achieved in the plasma of ATO-treated APL patients - was greater (2 or 3 fold more) than that found after treatment with ATO 1 or 2 μM alone (Figure 1D). The treatment with PD98059 alone showed a low increase of cell death in patient # 2, while a stronger apoptosis induction was observed in patients # 1 and # 3 (relapse) (Figure 1D).

Abrogation of MEK1 expression by siRNA sensitizes NB4-AsR cells to ATO treatment

To determine the contribution of MEK-ERK pathway activation in mediating ATO resistance, the MEK1 mRNA was selectively knocked-down by means of specific double-stranded RNA oligonucleotides (siRNA). Transfection of MEK1 siRNA but not the non-specific control siRNA, led to decrease MEK1 in NB4-AsR without affecting the levels of the unrelated protein actin (Figure 2a). When NB4-AsR were treated with ATO an increased PARP fragmentation and an important shift in green fluorescence, indicating loss of ΔΨm, was observed in cells transfected with MEK1 siRNA relative to cells transfected with control siRNA (Figure 2a and b). These findings indicate that the MEK-ERK pathway is determinant in the development of ATO resistance.

ATO triggers dissociation of Bcl-xL and Bcl-2 from Bad in APL cells

We proceeded to investigate whether the phosphorylation status of Bad affected its capacity to associate with the death antagonists Bcl-xL and Bcl-2 in NB4-AsR and parental NB4 cell lines. To this end, we examined the constitutive and ATO-induced protein-protein interactions of Bad pathway components using coimmunoprecipitation. Preliminary studies confirmed that the Bad antibody effectively precipitated Bad (data not shown). In untreated NB4-AsR and
NB4 cells, we observed a significant binding of Bcl-xL and Bcl-2 proteins to Bad immunoprecipitates indicating the presence of endogenous Bad/Bcl-xL or Bad/Bcl-2 heterodimers (Figure 3). The levels of Bcl-xL and Bcl-2 that coimmunoprecipitated with Bad were comparable in both cell lines (Figure 3). After treatment with ATO, the binding of Bcl-xL and Bcl-2 to endogenous Bad sharply decreased in both cell lines (Figure 3).

Interestingly, after ATO treatment, we observed a reduced amount of Bad/Bcl-xL and Bad/Bcl-2 heterodimers in NB4-AsR compared to NB4 (Figure 3); this behavior correlated well with the different phosphorylation status of Bad in these two lines treated with ATO (Figure 4). In order to examine the amounts of free Bcl-xL and Bcl-2 that did not coimmunoprecipitate with Bad, the supernatants after Bad immunoprecipitation were Western blotted for Bcl-xL and Bcl-2. The amount of free Bcl-xL in untreated NB4-AsR or NB4 cells was comparable, but after ATO treatment we observed a stronger increment of free Bcl-xL in NB4-AsR compared to parental NB4 (3 versus 1.7 fold increase compared to the control respectively) (Figure 3). Interestingly, even if the total amount of Bcl-xL was comparable in both cell lines (Figure 4), free Bcl-xL was nearly doubled in NB4-AsR compared to NB4 in ATO-treated cells (Figure 3). In untreated cells the amount of free Bcl-2 was more evident in NB4 than in NB4-AsR. As per free Bcl-xL, a stronger increment of free Bcl-2 was observed in NB4-AsR compared to NB4 (2.6 versus 1.4 compared to the control) after ATO treatment; the amount of free Bcl-2 was higher in NB4-AsR. The treatment with MEK-1 inhibitors was able to down-modulate ERK 1/2 and Bad phosphorylation (Figure 4) leading to a strong increment of Bcl-xL and Bcl-2 protein that immunoprecipitated with Bad in both cell lines (Figure 5).

The rationale to investigate p73-p53AIP1 pathway

Despite the well documented clinical efficacy of ATO the precise mechanisms regulating arsenic-dependent induction of apoptosis have not been elucidated and several molecular targets have been proposed. (reviewed in 6) Whereas the role of p53 in stress responses is well established, recent advances strongly support a pivotal role for the p53 paralogue p73 in the execution of drug-induced cell death and chemosensitivity of cancer cells in both p53 wild type and p53 null tumors. (reviewed in 6) Multiple TA (transactivation competent, pro-apoptotic and anti-proliferative) p73 COOH-terminal splicing isoforms (α,β,γ,δ,ε,ζ) exist. In addition, dominant negative (ΔN) variants are expressed from a second promoter, which lack the amino-terminal transactivation domain, act as trans-repressors of p53 and p73-dependent transcription and possess anti-apoptotic and pro-proliferative potential. ΔNp73 inhibits both TAp73 and p73-induced apoptosis. (reviewed in 6) Enhanced expression of ΔNp73, rather than inactivating mutations within the TT73 gene, has been associated with tumor development. The ability of TAp73 proteins to induce cell cycle arrest and apoptosis in cells exposed to anti-cancer drugs rely on their ability to activate a number of p53-responsive elements (p53-RE) containing target genes. p53AIP1 (p53-regulated Apoptosis-Inducing Protein 1), whose expression is induced by p53 and TAp73 under apoptotic conditions has been recognized as a primary effector gene of wild type p53 and TAp73-induced apoptosis. (5,9) Taken these values we have considered of great interest to investigate whether the p73-p53AIP1 pathway is involved in the pro-apoptotic mechanisms induced by ATO+MEK1 inhibition combination. We studied the promyelocytic leukemia NB4 cell line whose p53 protein has lost the ability to bind and activate its target genes. Treatment with
ATO and MEK1 inhibitor activates the p73-p53AIP1 apoptotic pathway in NB4 leukemic cells. We found that MEK1 inhibitors reduce the levels of dominant negative ΔN-p73 proteins and promote the accumulation of endogenous p73 by its transcriptional activation and its tyrosine phosphorylation, resulting in p21 up-regulation and significant cell growth inhibition.

ATO reduces ΔN-p73 levels and promotes a p300-mediated acetylation of endogenous p73, thus favouring cell cycle arrest and apoptosis. Finally, the combined treatment with MEK1 inhibitors and ATO enhances the affinity of phospho-acetylated p73 for the p53AIP1 promoter in vivo, as determined by chromatin immunoprecipitation experiments, leading to p53AIP1 up-regulation and increased apoptosis (Figure 5).

Material and Methods

Leukemia cells were isolated and enriched as described. ATO was purchased from Sigma (St Louis, MO); PD184352, a potent and highly selective MEK1/2 inhibitor was kindly provided to us by Dr J.S. Sebolt-Leopold (Cancer Molecular Sciences, Pfizer Global Research & Development, Ann Arbor, MI). PD98059 was provided by Cell Signaling Technology, Beverly, MA.

Cell lysis, *in vitro* treatment, apoptosis assays, immunoblotting, transfection and statistical analysis were carried out as previously described.

References

Acute Promyelocytic Leukemia

C05

SHORT CHAIN FATTY ACID-HDAC INHIBITORS INDUCE SPECIFIC CHROMATIN MODIFICATION AND GENE SILENCING IN CBF/AML CELLS

Santini V, Barbetti V, Gozzini A, Ferrari G, Dello Sbarba P, Rovida E

Department of Hematology and Department of Pathology and Experimental Oncology, University of Florence, Firenze, Italy

Acute myeloid leukaemia (AML) characterized by the presence of AML1/ETO fusion protein, or by other rearrangements involving core binding factors, share a common leukemogenic mechanism, determining transcriptional repression of target genes important for myeloid maturation. The oncogenic fusion proteins determine the permanent recruitment to the bound portion of DNA of protein complexes containing HDACs, DNMTs and co-repressor molecules. We demonstrated that butyrates are able as single agents to restore histone acetylation and to reinstate the gene expression allowing granulocytic maturation in AML1/ETO pos Kasumi-1 cell line, as well as in primary CBF-AML blasts. Core histone proteins can be acetylated by histone acetyl transferases (HAT) or methylated by histone methyltransferases (HMT) at N-terminal lysines, at different residues which are specifically associated to the transcriptional state of the nearby chromatin. Transcriptionally active chromatin is characterized by histones with acetylated lysine tails, and methylated lysine 4 of histone H3, whereas di-methylated lysines 9 and 14 of histones H4 and H3 seem associated with transcriptional silence. We investigated the acetylation and di-methylation pattern of lysine residues of histone H4 and H3 in our AML1/ETO pos cell model, prior and after exposure to butyrate as HDAC inhibitor. Cells were lysed after 6-12-72 and 96 hrs of culture and whole cell lysate was analysed by SDS-PAGE electrophoresis and Western blot, with antibodies specific to different lysine residues of the two histones. K5 and K16 residues of histone H4 were not acetylated in the absence of butyrate and their acetylation strongly increased after 6 h of butyrate treatment. K14 and K12 residues showed a basal acetylation which was slightly enhanced by the treatment with the short chain fatty acid HDAC inhibitor. Histone methyllysine of histone H3 was also evaluated. Butyrates determined a significant reduction of di-methylated K9 H3. Di-methylated K4 H3 was, on the other hand, unmodified after butyrate administration. These histone epigenetic modifications were paralleled by an increase of p21cip1 protein expression and a decrease of p27kip1 protein expression. Appearance of a conspicuous amount of p57kip2, an as yet uncharacterised oncosuppressor, after 72-96 h treatment with butyrates was also observed. Moreover, CEBP family expression and phosphorylation were induced. In parallel, AML1/ETO mRNA and protein expression was markedly reduced after D1 exposure. Our findings are consistent with the hypothesis of a specific direct activity of HDAC inhibitors in removing the corepressor complex which causes the block of transcription in CBF/AMLs.

C06

ROLE OF EPIGENETIC MODIFICATIONS IN ACUTE PROMYELOCYTIC LEUKEMIA

Villa R, Di Croce L

Center for Genomic Regulation, Passeig Maritim Barcelona, Spain

Many human cancers are characterized by alterations in the balance of DNA methylation. In cancer cells, a large part of the genome undergoes dramatic hypomethylation, which is often linked to genome instability, concomitantly with regional gain of methylated sequences at sites usually unmethylated (CpG islands). The major outcome of promoter hypermethylation appears to be long-term silencing of the associated gene. Silencing of tumor suppressors due to such a mechanism can provide a growth advantage to cancer cells. The ability of the PML-RARα fusion protein to block hematopoietic differentiation and to induce acute promyelocytic leukemia is based on aberrant gene repression. Mechanistically, PML-RARα inactivates its target genes by recruiting histone deacetylase (HDAC) and DNA methyltransferase activities to the promoters.

We show that MBD1 is required for silencing the PML-RARα target promoter, RARα. Following PML-RARα-induced promoter hypermethylation, MBD1 is recruited to and remains associated with the silenced RARα promoter. Mutations in the MBD and TRD domains of MBD1 restore RARα transcriptional activity. We provide evidence that HDAC3 is a common interactor for both PML-RARα and MBD1. Chromatin immunoprecipitation analysis revealed that MBD1 association to PML-RARα target genes is not confined to the promoter region but instead is spread over the locus.

Retroviral expression of dominant negative mutants of MBD1 in hematopoietic precursors compromised the ability of PML-RARα to block their differentiation and thus restored cell differentiation. Together these results identify MBD1 as a critical mediator of PML-RARα-induced gene silencing subsequent to promoter hypermethylation. Further characterization of the PML-RARα co-repressor complex, which establishes and allows spreading of the silenced state, will provide insight into crosstalk among the different epigenetic layers as well as into the molecular pathology of leukemia.

C07

SYNERGISM BETWEEN α TOCOPHEROL AND ARSENIC TRIOXIDE IN ACUTE PROMYELOCYTIC LEUKEMIA TREATMENT. ANALYSIS IN THE TRANSGENIC MOLDE HCG-PML-RARα

Abreu e Lima RS, Scheucher PS, Saggiorio FP, Garcia AB, Pintao MCT, Santana BAA, Teixeira HLG, Paneppucci RA, Falcão RP, Rego EM

Medical School of Ribeirao Preto, Ribeirao Preto, Brazil

Background. α tocopherol succinate (VES) is a vitamin E analog with antiproliferative activity against several cancer cell types. VES has strong redox activity and has been shown to inhibit protein kinase C (PKC) and target Akt and JNK pathways, and thus activating the intrinsic cell death mediators of caspase-9 and -3. Likewise, AsO3 [an agent that has successfully been employed in the treatment of patients with acute promyelocytic leukemia (APL)] was shown to induce apoptosis through activation of APAF-1, caspases-3 and -9 and cleavage of Bid. Unfortunately, AsO3 treatment is unavailable to most APL patients in Latin America. Aims: a) to determine if VES is effective against t(15;17)/APL; b) to study its mechanism of action and c) to characterize if there is synergism between VES and AsO3.

Methods. We used a syngeneic transplantation model of APL: blasts from hCG-PML-RARα transgenic mice (TM) were IV injected in irradiated non-transgenic littermates. Massive infiltration of bone marrow (BM), spleen and liver was detected by 21st day. Recipient mice were treated with: VES (50 UI/g/d) (n=15), AsO3 (2.5 µg/g/d) (n=15), VES+ AsO3 (n=15) at the same doses, or vehicle (Control; n=15) starting from day 4 for 21 days. Molecular remission was
induces repression of RA-signaling pathway by affecting the methylation status at RA-target genes. By using cell lines carrying an endogenous AML1/ETO (Kasumi and SKNO) and myeloid cell lines stably transfected with an HA tagged AML1/ETO (U937-ΔE) we found that the AML1/ETO: i) binds and modulates the activity of a RARβ2 gene promoter; ii) recruits DNMTs and MBDs on genes that are target of both RAR and AML1; iv) induces hypermethylation of the promoter/exon1 region of RARβ2 gene. Finally, silencing of AML1-ETO mRNA restores the differentiation response of SKNO cells to RA. In summary, our results suggest that the AML1/ETO fusion protein, which is present in non-APL AML blasts, induce repression of RA-signaling pathway, as the APL-associated PML-RARs. Moreover, this repression occurs in a HDAC/DNMTs dependent manner that affects the acetylation/methylation status of a RA-target gene. This indicates that common mechanism of leukemogenesis is shared by the two most frequent fusion proteins in AMLs.

C07

TARGETING OF TELOMERASE BY RETINOIDS IN ACUTE PROMYELOCYTIC LEUKEMIA AND NON ACUTE PROMYELOCYTIC LEUKEMIA

Département d’Hématologie, Hôpital Saint-Louis, Paris, France; Dept of Biochem. and Mol. Biol., University of Debrecen, Debrecen, Hungary

Acute promyelocytic leukaemia (APL) is efficiently treated with a cell differentiation inducer, all-trans retinoic acid (ATRA). However, a significant percentage of patients still develops resistance to this treatment. Recently, arsenic trioxide (As2O3), alone or in combination with ATRA, has been identified as an alternative therapy in patients with both ATRA-sensitive and ATRA-resistant APL. Molecular investigations have provided theoretical support to this synergism in that both ATRA and As2O3 induce modulation and/or degradation of PML-RARα oncoprotein through distinct pathways. Recently, we have shown that long-term treatment with all-trans retinoic acid, represses hTERT in differentiation-resistant APL cell lines, leading to telomere shortening and death. This signaling requires the co-activation of the retinoic acid receptor (RAR) and the retinoic X receptor (RXR). We have also demonstrated in vitro that the success ATRA/As2O3 treatment in APL pathology can be explained, at least in part, by a synergistic effect of these two drugs in triggering downregulation of telomerase efficient enough to cause telomere shortening and subsequent cell death in several ATRA-maturation resistant APL cell lines. The synergism between these two agents highlights important aspects of their integration into the clinical protocols. First, that such long-term low-dose combinational treatments could lead to a favourable outcome in APL patients, with the enhanced benefit of minimal toxicity. Second, the fact that altered regulation of hTERT expression in cancer cells could rescue them from death, clearly indicates that eradication of residual cells will likely require pharmacological treatment targeting telomerase activity. These results reinforce the notion that the anti-telomerase strategy, based on a combination of active agents, should now be considered and evaluated not only in APL but also in other malignancies. In vitro treatments performed on samples from patients suffering from APL and non APL leukaemia are shown. The results support the previous in vitro studies on cell lines.

C08

EPIGENETIC SILENCING OF THE RETINOIC ACID SIGNALLING PATHWAY IN ACUTE MYELOID LEUKEMIASE

Department of Histology & Medical Embryology and of Cellular Biotechnology and Hematology, University of Rome “La Sapienza”; San Raffaele Bio-medical Science Park of Rome, Department of Biopathology, University of Rome “Tor Vergata”; European Institute of Oncology, Milan, Italy

AML1/ETO, the fusion product of the acute myeloid leukaemia (AML) chromosomal translocation t(8;21), promotes leukemogenesis by recruiting histone deacetylase activities (HDAC) on critical genes involved in myeloid differentiation. In the case of the acute promyelocytic leukaemia (APL), the PML-RARα fusion protein aberrantly recruits both histone deacetylase (HDAC) and DNA methyltransferase (DNMT1-5a) activities on the retinoic acid (RA)-target promotor RARβ2, resulting in its transcriptional silencing and block of myeloid differentiation. Using Southern blot analysis of genomic DNA and methylation-specific PCR (MSP) we found that the RARβ2 promoter region, which includes the RA-responsive element (RARE) and transcription start site, is methylated in samples from 7/9 AML-M2, 9/10 AML-M4, while the region located in the 5 portion of the exon 1 of RARβ2 is methylated in 9/9 AML-M2, 8/10 AML-M4. Neither of these RARβ2 regions was bound methylated in CD34+ normal haemopoietic precursors. Accordingly, RARβ expression was detectable in normal CD34+ cells but not in any of the 24 AML cases analysed. We therefore analysed whether the expression of AML1-ETO into hematopoietic progenitors
Acute Promyelocytic Leukemia

C10
INHIBITION OF P38MAPK-DEPENDENT PHOSPHORYLATION AND DEGRADATION OF SRC-3/AB1 MODULATES RAR-α-MEDIATED TRANSCRIPTION AND FAVOURS GRANULOCYTIC MATURATION OF ACUTE PROMYELOCYTIC LEUKEMIA LEUKEMIC CELLS

Gianni M, Parrella E, Raska I, Gaudon C, Rochette-Egly C, Garattini G
Laboratorio di Biologia Molecolare, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy; Institute de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, Illkirch, France

The transcriptional activity of RARs and RXRs is modulated by phosphorylation processes involving the receptors and specific co-regulator proteins. Among the large number of co-activators that have been identified, the SRC/p160 family and p300/CREB binding protein (CBP) stand out. These co-activators are targets for the ubiquitin-proteasome pathway. Phosphorylation was shown to regulate co-activator activity through the control of their interaction with nuclear receptors or other co-activators. In addition, like RARs, co-activators are targets for the ubiquitin-proteasome pathway. Transactivation experiments performed on COS cells show, that during ligand-dependent activation of RARs, the p160 co-activator SRC-3 is phosphorylated by p38MAPK and subsequently degraded by the proteasome. The co-transfection of a dominant-negative p38MAPK construct demonstrates that this biphasic process is correlated to an attenuation of RARα-mediated transcription. In fact, inhibition of p38MAPK enhances the interaction RARα-SRC-3 and this correlates with increased RARα-mediated transcription. Moreover, since inhibition of p38MAPK blocks also the degradation of SRC-3, the phosphorylation of this protein is also a permissive signal for proteasome-mediated degradation. In COS cells, RA-induced SRC-3 phosphorylation and degradation occur only within the context of RARα and possibly p300/CREB binding complex, suggesting RAR isotype specificity. Myeloid leukemia HL60 and NB4 express SRC-3 and the protein is degraded in the presence of RA treatment. Degradation of SRC-3 is blocked by the p38 inhibitor, PD169316. Combined treatment of NB4 or HL60 with PD169316 and RA increases granulocytic maturation of these cells and increases the expression of several markers associated with granulocytic maturation (cEBP-β, STAT1). PD169316 exerts its effects essentially on SRC-3 since a specific siRNA directed against SRC-3 not only decreased SRC-3 expression but also attenuates NBT reducing activity and increases RA target gene activation. Since RA is used in the treatment of acute promyelocytic leukemia (APL) and several other malignancies, the combined use of pharmacological inhibitors of p38MAPK may have clinical potential. In this context, it is worth underscoring that inhibition of p38MAPK can also relieve the RA resistance of NB4-LR2 and NB4-007/6 cell lines.

P01
THE PROTECTIVE EFFECT OF GANGLIOSIDE ON HUMAN CORTICAL NEURON TREATED BY ARSENIC TRIOXIDE

Zhou J, Meng R, Li L, Jia J, Yang B
1 The first hospital of Harbin Medical University; 2 Xuanwu Hospital, The Capital University of Medical Sciences, China

Background. Arsenic trioxide (As2O3) is a very effective therapeutic agent for acute promyelocytic leukemia (APL), especially in cases resistant to conventional chemotherapy. It is also effective in other leukemia subtypes, malignant

P02
STUDY ON THE TOLERANT DIFFERENCE BETWEEN HUMAN CORTICAL NEURONS AND ACUTE PROMYELOCYTIC LEUKEMIA LEUKEMIC CELLS TO ARSENIC TRIOXIDE

Zhou J, Meng R, Ji X, Jia J, Yang B
1 The First Hospital of Harbin Medical University; 2 Xuanwu Hospital, The Capital University of Medical Sciences, China

Background. Arsenic trioxide (As2O3) is a very effective therapeutic agent for acute promyelocytic leukemia (APL), especially in cases resistant to conventional chemotherapy. It is also effective in other leukemia subtypes, malignant