
haematologica reports 2006; 2(issue 10):September 200618

[haematologica reports]
2006;2(10):18-26

A. MAHESHWARI*

M. ZEMLIN°

From the *Departments of Pedia-
trics and Cell Biology, University of
Alabama at Birmingham, Birmin-
gham, AL, USA and °Clinic for Neo-
natology and Neuropediatrics, Phi-
lipps Universitat Marburg, Marburg,
Germany

Correspondence:
Akhil Maheshwari, MD, Division
of Neonatal-Perinatal Medicine,
Department of Pediatrics and
Cell Biology, NHB 525 619 19th
Street S University of Alabama at
Birmingham, Birmingham, AL
35233, USA
Office: (205) 934-6450
Fax: (205) 934-3100
E-mail: akhil@peds.uab.edu

Ontogeny of the intestinal immune system

All major components of the gut immune apparatus including the (1) epithelial barri-
er (2) mononuclear leukocytes in the lamina propria, and (3) organized gut-associated lym-
phoid tissue are anatomically identifiable in the fetus by 200 days of gestation. Howev-
er, the functional maturation of this mucosal immune system is completed only in the
postnatal period following introduction of enteral feeds and colonization with commen-
sal bacterial flora. In the premature or sick newborn infant, this process of maturation
might be delayed or altered and may in turn predispose the infant to infection, inflam-
matory states such as necrotizing enterocolitis, and allergic sensitization. 

The newborn infant faces a major anti-
genic challenge following introduction
of oral feeds and microbial coloniza-

tion of the gastrointestinal mucosa.1-3 The
mucosal immune system in the intestine
has a complex role, in protecting the host
from potentially harmful pathogens while
at the same time 'tolerating' other resident
microbes and dietary macromolecules to
allow absorption and utilization of nutri-
ents.4,5 In this review, we outline the ontoge-
ny of the intestinal immune system and
analyze possible relationships between
abnormal maturation of the mucosal
immune response in premature/sick infants
and various pathophysiological states. The
emphasis is on human intestinal develop-
ment, and corroborating evidence from
experimental animals has been appropri-
ately qualified in the text.

Ontogeny of the intestinal
immune system

Intestinal epithelium and its immune
functions

Structural differentiation of the mucosal
epithelium starts with establishment of the
crypt-villus axis. Villus formation progress-
es from the proximal intestine at about 8
weeks gestation to the colon by 10-12
weeks.6 Crypt differentiation follows, occur-
ring at 12-19 weeks.7,8 By week 9, mucosal
cells differentiate into primitive entero-
cytes, goblet cells and enterochromaffin
cells.9-11 Intercellular tight junctions appear

from week 10 and form the anatomical
basis for an epithelial barrier.7

Epithelial maturation continues during
late gestation and infancy. This process is
modulated by various cytokines and growth
factors present in the systemic circulation,
interstitial fluid, and ingested amniotic flu-
id and human milk.7,12-14 A detailed descrip-
tion of these peptides is available else-
where.15 Mucosal growth involves fission
and deepening of crypts, increase in villus
width and number, and appearance of sub-
mucosal folds. A second phase of epithelial
hyperplasia is observed at the time of
weaning.16

Intestinal epithelial cells (IECs) play a key
role in mucosal immunity. These cells
express HLA-I and HLA-DR by 18-22 weeks,
and can serve, at least in vitro, as non-pro-
fessional antigen-presenting cells.15,17-20 IECs
can also express a variety of non-classical
MHC class I molecules, which may have a
role in antigen presentation, as co-stimula-
tory molecules, or as intercellular adhesion
molecules.21 Besides a possible role in anti-
gen presentation or processing, IEC HLA-
DR expression may also be important in the
maturation and selection of intra-epithelial
lymphocyte clones.22 

Fetal/neonatal IECs express various
innate response receptors and can produce
a significant local acute inflammatory
response. Fetal IECs produce more inter-
leukin-8 (IL-8 or CXCL8) upon exposure to
lipopolysaccharide (LPS) or IL-1 than
ileal/colonic epithelial cells from adult sub-
jects (Figure 1).23-27 Epithelial-derived IL-8
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may serve an important role in host defense as this
chemokine can recruit and activate both neutrophils
as well as mononuclear phagocytes.28-30 Fetal IECs also
produce tumor necrosis factor (TNF)-α, IL-1, IL-6, IL-
8, and platelet-activating factor (PAF).31 The ability of
fetal IECs to respond to LPS points towards a function-
al Toll-like receptor 4 pathway, which activates nuclear
factor kappa B (NF-κB)-mediated gene transcription.8

An intact NF-κB pathway may be of teleological
advantage during the fetal period. We have shown
that NF-κB may block the apoptotic effects of TNF-α
by activating IL-8 production.23 Since reduction in
apoptosis is important for the exponential increase in
cell numbers during mucosal growth,32 an active NF-κB
pathway may be conducive for intestinal organogen-
esis. The hyper-responsiveness of fetal enterocytes to
LPS is due to lower levels of inhibitor of κB (IÎB).33 NF-
κB signals are downregulated after birth, perhaps as
an adaptive mechanism to prevent inflammation from
bacterial colonization. In neonatal (as compared to
fetal) mice, IECs develop a post-transcriptional down-
regulation of IRAK-1, a key intermediate in LPS-
induced signaling.34

Enterocytes have also an important role in immuno-
globulin (Ig) transport. Polymeric Ig receptor (pIgR)
expression has been observed in the fetal intestine by
12-15 weeks, and the protein can be demonstrated by
immunofluorescence by 28 weeks.17,35,36 pIgR allows the
uptake of polymeric Ig at the basolateral surface,
which is then translocated to the luminal surface.
Fetal/neonatal enterocytes also express the neonatal
Fc receptor (FcRn) from 18-22 weeks, which allows
for bidirectional Ig transport across the intestinal
epithelium.37,38 FcRn facilitates the passage of antibod-
ies to the lumen or the uptake of immune complexes
or breastmilk antibodies from the lumen.8,37,39

Besides enterocytes, other epithelial cells also play

an important role in host defense. Goblet cells start
producing mucus by week 12.7 Paneth cells also appear
at this time, and these cells produce antibacterial pro-
teins such as lysozyme and α-defensins. The number
of Paneth cells per crypt is developmentally regulated
and increases with maturation until adulthood.40 

Follicle-associated epithelium (FAE)
The epithelium overlying the lymphoid follicles and

Peyer’s patches is uniquely adapted to sample luminal
antigens for transfer to the subjacent immune cells.
The FAE includes the so-called M cells (‘membranous,’
or ‘microfold’ cells), which are specialized for the
uptake and transcytosis of macromolecules.41-45 M cells
have epithelial characteristics such as polarization and
tight junctions, but instead of a brush border typical
of enterocytes, have small microfolds on the apical
surface.42,46-52 In addition, the basolateral membrane is
invaginated to form a cytoplasmic ‘pocket’ that typi-
cally contains lymphocytes, and occasionally macro-
phages or other cells (Figure 2).53-55 M cells have been
demonstrated in the human fetus as early as 17
weeks.11,18,42,56,57 The M-cell population expands rapidly in
the first postnatal week in various animal models, but
these changes have not been studied in the human
neonate.49,58,59 

Perinatal closure of mucus membranes
During the immediate neonatal period, particularly

in the preterm or small-for-date infant, the intestinal
mucosa remains permeable to intact macromolecules
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Figure 1. Immunohistochemistry for interleukin-8 (diami-
nobenzidine, brown) in sections from (A) human fetal inte-
stine (22 week gestation) and (B) duodenal biopsy from
an adult subject. In contrast to adult intestinal epithelial
cells, fetal epithelial cells display strong immunoreacti-
vity for IL-8. Magnification: 400x. (Data from Maheshwa-
ri et al. 2004).

Figure 2. Schematic diagram showing the relationship of
M cells with the subepithelial dome and the lymphoid fol-
licle. The M cell shows an active transcytotic pathway
which transfers antigenic particles from the intestinal
lumen (top) to the basolateral ‘pocket’ domain. Mononu-
clear cells, which apparently cross through the relatively
porous basal lamina, enter the M-cell pocket to receive
these antigens. Lymphocytes, macrophages and dendri-
tic cells are present in the subepithelial dome, which is
a cap-like structure overlying a lymphoid follicle.



and bacteria.60 This increased permeability may be
related to increased transcytosis and/or higher para-
cellular permeability due to immature tight junctions.61

Mucosal permeability can be indirectly measured as
urinary lactulose and mannitol ratio following oral
administration of a measured load of both sugars.
There is a rapid reduction in sugar permeability over
the first postnatal week, resembling the pattern of gut
closure in experimental animals.62 A similar reduction
in permeability is also seen at other mucosal sites and
therefore disappearance of IgG from saliva can also

be used to study these maturational changes.63

The mucosal hyper-permeability may by teleologi-
cally advantageous in utero by allowing a bidirection-
al exchange of bioactive molecules between amniot-
ic fluid and fetal serum.64,65 However, in the postnatal
period, timely and efficient membrane closure is
essential for survival.60 Colostrum/breastmilk feeds, in
contrast to infant formula, enhance the maturational
process.62 Similarly, initial colonization with lactobacil-
li or bifidobacteria, as against coliforms, facilitates the
normal reduction in mucosal permeability.66,67 

Lymphoid tissue
Peyer’s patches and other organized lymphoid
tissue

Peyer's patch become identifiable in fetal ileum at 11
weeks as aggregates of HLA-DR+, CD4+ lymphoid
cells.68,69 Major events in Peyer’s patch development
have been summarized in Figure 3 and Table 1.19,69,70 At
birth, the organized lymphoid compartment is naïve but
structurally complete, and the predominant activity
involves proliferative expansion (rather than primary
lymphopoiesis).70 The number of PP increases from
about 60 at birth to over 200 by 12–14 years.71 In the
vermiform appendix, the development of lymphoid
structures lags behind the Peyer’s patches.72 Appen-
diceal lymphoid follicles enlarge rapidly after birth fol-
lowing bacterial colonization and translocation.73 The
first IgA+ plasma cells appear at 2 weeks after birth and
then increase to adult levels at 4-5 months.

Lymphocytes in Lamina propria and intra-epithe-
lial compartments

Scattered B cells are first observed in the lamina
propria at 14 weeks gestation.69 The fetal intestinal B
cell population consists of two distinct cell types. The
first population of large, dividing, mature B cells shares
morphologic and phenotypic (CD20+IgM+IgD+light
chain+) features with the thymic B cells. These are
large-sized cells with extensive cytoplasmic process-
es, which are in contact with adjacent T cells. A sec-
ond population of smaller pre-B cells (IgM+ light
chain-CD20-) has also been identified, suggesting the
presence of local B cell development.74 As extrathymic
T cell development occurs in human fetal intestine
(vide infra), it has been hypothesized that as in the
thymus, the B cells may play a role in the develop-
ment and selection of the T cells. 

The B cell population in the fetal intestine compris-
es IgM+ and IgG+cells.17 The fetal intestinal B cell reper-
toire is similar to B cells in circulation or other organs,
but differs significantly from plasma cells in postna-
tal intestine.74 After birth, the IgM+ plasma cell popu-
lation expands faster than IgG+ cells, and at the same
time microbial stimulation induces B cells to undergo
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Figure 3. Organization of a Peyer' patch. Peyer’s patches
appear as lymphocyte clusters at 100-110 days of gesta-
tion. Discrete B cell follicles and T cell zones, a dome
region, and the FAE are observed at 130-140 days. Ger-
minal centers develop after birth following antigenic sti-
mulation.

Table 1. Development of Peyer’s patches (PP) in the
human fetus.

11 wks gestation PP anlagen with HLA-DR+ 
CD4+ lymphoid cells

16 wks gestation Appearance of T and B cells 
First appearance of CD8+ cells*
B cell maturation with
appearance of surface IgM
and IgD 

16-18 wks gestation Appearance of CD5+ B-1 cells 
Surface IgA on B cells

18-20 wks gestation Appearance of PP zonation into 
B and T cell areas

24 wks gestation PP are macroscopically
identifiable

0-4 wks post-natal Germinal center formation

*Fetal Peyer’s patch T cells are predominantly of the CD4+ phenotype.



IgA class switch in both lamina propria and organized
lymphoid tissue.75 IgA+ plasma cells are first seen in the
lamina propria during the second postnatal week.76-78

The number of IgA+ cells in the mucosa reach adult lev-
els at 2 years, although serum IgA concentrations
reach adult levels only during the second decade.19

Intestinal T cells can be identified from 12-14 weeks
of gestation.79 Outside the organized lymphoid tissue,
intestinal T cells are distributed as intra-epithelial
(IELs) and lamina propria lymphocytes (LPLs). The fetal
gut has a small number of IELs (3-5 CD3+ IEL/100 IECs
compared to 6-27 cells/100 IECs in older children),
which expand rapidly after birth (a 10-fold expansion
of the αβ T cells and a 2-3 fold increase in the γδ cells,
vide infra).19,80 In contrast, LPLs continue to expand dur-
ing fetal period and have a density similar to the post-
natal intestine by 19-27 weeks gestation.79

Several early lineage T cell populations can be seen
in the fetal intestine, suggesting that T cells may
develop locally in an extra-thymic pathway.69,70,79,81-86

These immature T cell lineages have been shown in
Figure 4. Whereas most immature LPLs differentiate
rapidly after birth, the differentiation of IELs is slow-
er and continues through infancy.87 In addition to phe-
notypic changes, intestinal T cells also continue to
undergo functional maturation during infancy and
childhood. The TCR β-chain repertoire is polyclonal
during fetal period and infancy and  gradually becomes
restricted to the oligoclonal pattern characteristic of
adults. This restriction is likely due to expansion of a
few dominant clones  specific for the commensal bac-
terial flora.87 

In the fetal intestine, about 10-30% IELs express the
γδ T cell receptor.69 Rodent studies suggest that γδ cells
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Figure 4. T cell populations in the human fetal intestine. Intestinal T cells are distributed in the Peyer’s patch inter-
follicular zone, intra-epithelial paracellular spaces, and in the lamina propria. In fetal Peyer’s patches, majority of the
T cells are of the CD4+ helper/inducer phenotype. Intra-epithelial lymphocytes are predominantly CD3+, but include
equal numbers of CD8+ cytotoxic/suppressor and CD4– CD8– double negative cells. In the lamina propria, majority of
the cells are CD3+ with a CD4+ helper/inducer phenotype. However, nearly 20% cells are CD3– with a CD8+ or double
negative phenotype. Unlike CD8+ cells elsewhere in the gut, these CD3– CD8+ cells may carry an atypical CD8– – homo-
dimer. The presence of various immature T cell populations suggests that fetal intestine may serve as an extra-thymic
site of T lymphocyte differentiation.



may regulate IEC function, display cytotoxic activity,
and may promote antimicrobial immunity.88-90 Similar
to αβ T cells, the fetal/neonatal γδ repertoire is also
polyclonal.91

Intestinal macrophages and dendritic cells (DCS)
Many macrophage-like CD45+, HLA-DR+, CD4+ cells

are seen in the lamina propria even before 11 weeks, but
the relationship of these primitive cells with mature
macrophages and/or DCs is unclear.18 In fetal rats and
non-human primates, a small CD68+ macrophage pop-
ulation is seen sparsely scattered in the lamina propria.
These cells expand rapidly in the early neonatal peri-
od.92,93 Recent studies on the mouse fetus are consistent
with the observations in human adults that intestinal
macrophages lack various innate immune receptors
such as CD14, CD89, FcγR I–III (CD64, CD32, CD16),
CD11a, CD11b, CD11c, and CD18.34,94 This inflammatory
anergy of intestinal macrophages is likely an adaptive
mechanism to minimize inflammation in the normal
intestinal mucosa despite close proximity to immunos-
timulatory bacteria. 

We have shown recently that intestinal macro-
phages are derived from blood monocytes, which are
recruited under the influence of extra-cellular matrix
products such as IL-8 and transforming growth factor
(TGF)-β.28 In the lamina propria, newly recruited mono-
cytes acquire the unique phenotypic and functional
properties of intestinal macrophages under the influ-
ence of TGF-β.94

There is very limited data on fetal intestinal DCs.95

HLA-DR+ DC-like cells have been reported in both the
lamina propria as well as Peyer’s patches after 14
weeks, but these cells could not be clearly differenti-
ated from lamina propria macrophages.96 In rats and
non-human primates, DCs have been noted in the fetal
lamina propria as well in Peyer’s patches.92,97 The signif-
icance of early colonization by DCs is not clear.

Secretory immunoglobulins
Secretory immunoglobulins, IgA and IgM, play an

important role in mucosal defense. Secretory IgA (sIgA)
can be detected in mucosal secretions as early as 1-8
weeks after birth.63,98-100 sIgM, on the other hand,
appears transiently during early infancy.63 

sIgA levels rise during neonatal period to reach an
initial peak (as measured in saliva) at 4-6 weeks. In
premature infants, sIgA appears in secretions at a sim-
ilar chronological age as in full term infants, although
sIgA concentrations may be lower than full term
neonates. If chronological age is corrected for prema-
turity, sIgA concentrations then become similar to
matched full term infants.101,102 Salivary IgA levels con-
tinue to rise up to 18 months of age.102 A transient
nadir in sIgA has been inconsistently100,103 recorded at 3-

6 months.63,104 

Secreted immunoglobulins also change qualitative-
ly during the first year. There is a switch from
monomeric IgA to polymeric sIgA sometime during the
first year, indicating maturation of the secretory
immune system,105 or alternatively, increasing exposure
to exogenous antigens.106 The relative amounts of IgA
subclasses in mucosal secretions also changes during
infancy. At birth, sIgA1 is the dominant subclass but
sIgA2 increases rapidly by 6 months of age.103 

Specific sIgA responses appear to be related more to
the timing and quantum of the antigenic stimulus than
to developmental factors during infancy. sIgA antibod-
ies to E. coli somatic antigens appear in neonates
within a few weeks after timed exposure and colo-
nization.107 The strength of the stimulus also has an
effect: earlier, and stronger, specific sIgA responses are
seen in neonates born in areas endemic for a pathogen
as compared to infants in the developed world.105,108 

During the neonatal period, colostrum provides an
important alternative source of sIgA.109 Milk antibod-
ies, amounting to about 0.5-1 g/day throughout lac-
tation (comparable to the 2.5 g/day being produced by
a 65 kg adult), are directed against antigens present
in the environment shared by the mother-infant
dyad.110 The presence of ‘enteromammary’ and ‘bron-
chomammary’ pathways allow immune cells stimulat-
ed by antigens in the maternal intestine and bronchial
mucosa to migrate to the mammary gland.109,111-113

Interestingly, sIgA levels have been reported to be
higher in colostrum and milk of mothers of preterm
neonates.114 

Clinical relevance of delayed/altered
maturation of the mucosal immune
system

Bacterial translocation
The high permeability of the neonatal mucus mem-

branes may place the premature or sick neonate at
risk of systemic infection. Bacterial translocation,
defined as the passage of both viable/nonviable
microbes and microbial products of the flora across
the intestinal mucosal barrier, has been extensively
studied in rodent models.73,115-118

Premature neonates often have multiple risk factors
for bacterial overgrowth and translocation: delayed
initiation of enteral feedings, frequent use of hista-
mine receptor (H2) blockers, ileus secondary to opiate
sedatives, and the acquisition of coliform bacteria as
the initial microbial colonizers may all increase the
risk of bacterial translocation.3,110,119-127 Indeed, there is
increasing indirect evidence to suggest that bacterial
translocation plays a role in neonatal sepsis: (1) report-
ed isolation of identical bacterial ribotypes from blood
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and pharynx/rectum in septic neonates;128,129 (2) fre-
quent isolation of gut-derived (endogenous) organ-
isms in bloodstream infections in neonates receiving
parenteral nutrition;127,130 (3) reduction in incidence of
necrotizing enterocolitis-related deaths by using oral
antibiotics;131,132 the investigators hypothesized that
bacterial translocation is a graded phenomenon, is
more likely if enteric bacteria exceed a critical popu-
lation level (>109-10/g of stool in an animal model), and
is a key component of the pathophysiology of NEC;131,133

and (4) lower incidence of sepsis in breastfed neo-
nates; breastfeeding may alter the pattern of micro-
bial colonization, improve gut barrier function, and
provide antibacterial and immune factors.134,135

Viral infections
The high mucosal permeability of the neonatal intes-

tine to macromolecules as well as intact leukocytes is
likely to be an important factor in vertical and breast-
feeding-related HIV transmission.136 In a recent study on
breastmilk-related HIV transmission, each 10-fold
increase in cell-free or cell-associated virus was associ-
ated with a 3-fold increase in viral transmission after
adjusting for maternal CD4 cell counts and disease
stage.137 

Neonatal monocytes, due to higher proliferative
activity, are more permissive to infection with HIV-1
as compared to monocytes from adult subjects.138 Fur-
thermore, developmental characteristics of neonatal

lymphocytes such as suppression of interferon-α and
-γ responses by HIV proteins and relatively deficient
cytotoxic activity may prevent early elimination of
virus-infected cells.139-141 

Necrotizing enterocolitis
The developing intestine has a pro-inflammatory

bias and is predisposed to conditions such as necrotiz-
ing enterocolitis. Neonatal enterocytes have a higher
propensity to bind pathogenic gram-negative bacte-
ria due to the presence of sialic acid and N-acetylglu-
cosamine residues in the membrane glycocalyx.3 These
cells respond strongly to bacterial products such as
LPS, and a highly active NF-κB pathway increases the
epithelial inflammatory response with various media-
tors such as TNF-α, IL-1, IL-6, IL-8, and PAF.31

Allergic sensitization
Premature infants lack the intrinsic protective mech-

anisms of the adult intestinal mucosa that prevent
sensitization against luminal constituents: a strong
physical barrier, luminal enzymes that can alter ingest-
ed antigens, presence of regulatory T cells, and the
production of sIgA.142 The risk of sensitization is further
increased due to several developmental deficiencies
within primary immune cells: (1) specific antibody
responses in premature infants are abnormal due to
reduced antigen affinity, increased polyreactivity, and
autoreactivity;143,144 (2) the lengths of immunoglobulin
heavy chain third complementarity determining
regions (CDR3) are almost 3 amino acids shorter in the
fetus/premature infant than adults (Figure 5).145 This
reduces the potential antibody diversity available to
the fetus/preterm neonate by about 203 (= 8000)
fold.145 Moreover, antigen binding sites with short CDR3
regions, due to their tertiary structure, are more like-
ly to bind to peptides such as allergens;146 and (3) the
the short CDR3 regions of fetal CD5+ B1 cells share
characteristics with variable regions of IgE heavy
chains.147,148 These observations have led to the hypoth-
esis that B1 cells may contribute to the repertoire of
allergen specific IgE+ plasma cells, and that premature
exposure of the immature intestinal B cell repertoire
to allergens may influence the risk of sensitization.148

Acknowledgments: supported in part by NIH/NIAID
Center for HIV AIDS Vaccine Immunology (A.M.), Amer-
ican Gastroenterological Association/Foundation for
Digestive Health and Nutrition Research Scholar Award
(A.M.), American Heart Association BGIA 0665155B
(A.M.), the Children’s Center for Research and Innova-
tion/The Children’s Hospital of Alabama (A.M.), and the
Deutsche Forschungsgemeinschaft TR22, TPA17 (M.Z.).

Vth International Neonatal Hematology and Immunology Meeting, Brescia, Italy

haematologica reports 2006; 2(issue 10):September 2006 23

Figure 5. Developmental changes in immunoglobulin
heavy chain CDR3 lengths. Premature infants have a
significantly shorter CDR3-region as compared to prema-
ture infants at term post-conceptional age, newborn term
infants, and adults (p<0.05). The implications of short
CDR3 lengths in premature neonates include a smaller
antibody repertoire, which may increase the chances of
antigen exposure and sensitization, and antigen-binding
sites that favor peptides with allergenic potential. (Data
from Zemlin et al. 2001, Bauer et al., 2002).
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