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New insights into the molecular actions of 
nitrogen-containing bisphosphonates

About 10 years ago it was found that
mammalian cells could convert some
bisphosphonates (BPs) intracellularly

into methylene-containing (AppCp-type)
analogues of ATP, that accumulate in the
cytosol,1,2 reviewed recently.3 Only simple
BPs (ie those that most closely resemble
PPi, such as clodronate and etidronate, but
not alendronate, pamidronate or other N-
BPs) appear to be metabolised.2 More
recently, we have confirmed that osteo-
clasts in vivo are capable of metabolising
clodronate to AppCCl2p,4 and shown that
the accumulation of the AppCCl2p metabo-
lite of clodronate in osteoclasts in vitro
inhibits bone resorption by inducing osteo-
clast apoptosis,4 perhaps by inhibiting the
adenine nucleotide translocase (ANT), a
component of the mitochondrial perme-
ability transition pore.5 Nitrogen-containing
bisphosphonates (N-BPs), which are sever-
al orders of magnitude more potent at
inhibiting bone resorption in vivo than the
simple BPs,6,7 are not metabolised2 but are
potent inhibitors of farnesyl diphosphate
synthase (FPP synthase), a key enzyme of
the mevalonate pathway. This enzyme is
inhibited by nanomolar concentrations of
N-BPs.8-10 Zoledronic acid, and the struc-
turally similar minodronate, are extremely
potent inhibitors of FPP synthase10 and
inhibit enzyme activity even at picomolar
concentrations. Importantly, studies with
recombinant human FPP synthase revealed
that minor modifications to the structure
and conformation of the R2 side chain that
were known to affect anti-resorptive
potency on osteoclasts10 or activation of
γ,δ-T cells11 also affect the ability to inhib-
it FPP synthase (reviewed recently;6 thus
finally explain the relationship between BP
structure and anti-resorptive potency. Fur-
thermore, these studies strongly suggested
that FPP synthase is the major pharmaco-
logic target of N-BPs in osteoclasts and
other cell types. 

The exact mechanism by which N-BPs
inhibit FPP synthase is only just becoming
clear. The recent generation of an x-ray

crystal structure of the human FPP synthase
enzyme, co-crystallised with risedronate or
zoledronic acid,12,13 indicates that the BPs
appear to bind in one of the two isoprenoid
lipid binding pockets in the enzyme active
site (that would normally bind GPP or
DMAPP), with the R2 side chain positioned
in the hydrophobic cleft that normally
accomodates an isoprenopid lipid, and the
phosphonate groups bound to a cluster of
3 magnesium ions. Interestingly, the nitro-
gen atom in the R2 side chain appears to
form hydrogen bonds with a critical, con-
served threonine residue. This is consistent
with the earlier suggestion by Oldfield and
colleagues that N-BPs mimick the structure
of the enzyme’s natural isoprenoid
pyrophosphate substrates GPP/DMAPP and
act as carbocation transition state ana-
logues or reactive intermediates,14 compet-
ing for binding at the GPP/DMAPP substrate
binding pocket in the active site of the
enzyme. N-BPs also appear to inhibit bac-
terial FPP synthase in a similar manner.15

Enzyme kinetic analysis with human FPP
synthase indicates that the interaction with
N-BPs is highly complex and characteristic
of slow-tight binding inhibition. Initially, N-
BPs appear to compete directly with
DMAPP or GPP for binding to the
DMAPP/GPP binding pocket. However, this
is followed by more complex interactions
that affect the binding of IPP. Recent com-
puter modelling studies suggested that a
second molecule of N-BP might also bind to
the (IPP) isoprenoid lipid pocket in the
enzyme, which appeared to be supported
by enzyme kinetic analysis showing bipha-
sic modes of inhibition.16 However, binding
of N-BP to the IPP pocket of FPP synthase
has not yet been confirmed in x-ray crystal
structures,12,13 and the kinetic studies sug-
gesting inhibition at the IPP site may reflect
more complex conformational changes in
the structure of the enzyme due to binding
of N-BP in the DMAPP/GPP pocket. Never-
theless, these studies are beginning to key
insights into the reasons why minor
changes to the structure of the N-BP side
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chain or to the phosphonate groups markedly influ-
ence the potency of N-BPs for inhibiting FPP synthase,
hence explaining at the detailed molecular level the
structure-activity relationships of N-BPs for inhibiting
bone resorption and for activating γ,δ-T cells, which
are both due to inhibition of FPP synthase.6,11,17
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