Autoinflammatory diseases: what is behind them and what is new?


Published: 29 December 2022
Abstract Views: 1465
PDF: 411
HTML: 88
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Autoinflammatory diseases are characterized by bouts of systemic or localized inflammation in the absence of an infection. While some autoinflammatory diseases are caused by a single gene mutation, others have been shown to be multifactorial, involving a large array of genes coupled with environmental factors. Previous studies briefly elucidated the molecular mechanisms behind the many autoinflammatory diseases, focusing on the dysregulation of interleukin (IL)-1β or IL-18, nuclear factor- κB activation, and Interferons secretion. In this review, we precisely highlight the autoinflammatory disease-specific signalosomes, and we aim to provide a scaffold of the link between the various affected pathways.


1. Arakelyan A, Nersisyan L, Poghosyan D, et al. Autoimmunity and autoinflammation: A systems view on signaling pathway dysregulation profiles. PLoS One 2017;12(11):e0187572. (In eng). DOI: 10.1371/journal.pone.0187572.
2. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008;454(7203):428-435. DOI: 10.1038/nature07201.
3. Christgen S, Place DE, Kanneganti T-D. Toward targeting inflammasomes: insights into their regulation and activation. Cell Research 2020;30(4):315-327. DOI: 10.1038/s41422-020-0295-8.
4. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology 2016;16(7):407-420. DOI: 10.1038/nri.2016.58.
5. Zhong FL, Mamaï O, Sborgi L, et al. Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation. Cell 2016;167(1):187-202.e17. (In eng). DOI: 10.1016/j.cell.2016.09.001.
6. Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 2012;28:137-61. (In eng). DOI: 10.1146/annurev-cellbio-101011-155745.
7. Fenini G, Contassot E, French LE. Potential of IL-1, IL-18 and Inflammasome Inhibition for the Treatment of Inflammatory Skin Diseases. Front Pharmacol 2017;8:278. (In eng). DOI: 10.3389/fphar.2017.00278.
8. Faustin B, Reed JC. Sunburned skin activates inflammasomes. Trends Cell Biol 2008;18(1):4-8. (In eng). DOI: 10.1016/j.tcb.2007.10.004.
9. Fenini G. NLRP1 Inflammasome Activation in Keratinocytes: Increasing Evidence of Important Roles in Inflammatory Skin Diseases and Immunity. 2022 (https://www.jidonline.org/article/S0022-202X(22)00276-7/fulltext?dgcid=raven_jbs_etoc_email).
10. Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014;156(6):1193-1206. (In eng). DOI: 10.1016/j.cell.2014.02.008.
11. Grandemange S, Sanchez E, Louis-Plence P, et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis 2017;76(7):1191-1198. (In eng). DOI: 10.1136/annrheumdis-2016-210021.
12. Masumoto J, Zhou W, Morikawa S, et al. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021;41(1):33. (In eng). DOI: 10.1186/s41232-021-00181-8.
13. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009;27:519-50. (In eng). DOI: 10.1146/annurev.immunol.021908.132612.
14. Mitchell PS, Sandstrom A, Vance RE. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol 2019;60:37-45. (In eng). DOI: 10.1016/j.coi.2019.04.015.
15. Gurung P, Lukens JR, Kanneganti TD. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med 2015;21(3):193-201. (In eng). DOI: 10.1016/j.molmed.2014.11.008.
16. Verma D, Fekri SZ, Sigurdardottir G, Bivik Eding C, Sandin C, Enerbäck C. Enhanced Inflammasome Activity in Patients with Psoriasis Promotes Systemic Inflammation. J Invest Dermatol 2021;141(3):586-595.e5. (In eng). DOI: 10.1016/j.jid.2020.07.012.
17. Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 2015;265(1):35-52. (In eng). DOI: 10.1111/imr.12286.
18. Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev 2011;243(1):136-51. (In eng). DOI: 10.1111/j.1600-065X.2011.01046.x.
19. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nature Immunology 2016;17(10):1142-1149. DOI: 10.1038/ni.3558.
20. Ablasser A, Chen ZJ. cGAS in action: Expanding roles in immunity and inflammation. Science 2019;363(6431) (In eng). DOI: 10.1126/science.aat8657.
21. Xian H, Watari K, Sanchez-Lopez E, et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 2022;55(8):1370-1385.e8. (In eng). DOI: 10.1016/j.immuni.2022.06.007.
22. Karch J, Molkentin JD. Identifying the components of the elusive mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 2014;111(29):10396-7. (In eng). DOI: 10.1073/pnas.1410104111.
23. Kim J, Gupta R, Blanco LP, et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 2019;366(6472):1531-1536. (In eng). DOI: 10.1126/science.aav4011.
24. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews Drug Discovery 2018;17(8):588-606. DOI: 10.1038/nrd.2018.97.
25. Rowczenio DM, Trojer H, Russell T, et al. Clinical characteristics in subjects with NLRP3 V198M diagnosed at a single UK center and a review of the literature. Arthritis Research & Therapy 2013;15(1):R30. DOI: 10.1186/ar4171.
26. Booshehri LM, Hoffman HM. CAPS and NLRP3. J Clin Immunol 2019;39(3):277-286. (In eng). DOI: 10.1007/s10875-019-00638-z.
27. Oldham J, Lachmann HJ. The systemic autoinflammatory disorders for dermatologists. Part 2: disease examples. Clinical and Experimental Dermatology 2020;45(8):967-973. DOI: 10.1111/ced.14251.
28. Ryan JG, Aksentijevich I. Tumor necrosis factor receptor-associated periodic syndrome: toward a molecular understanding of the systemic autoinflammatory diseases. Arthritis Rheum 2009;60(1):8-11. (In eng). DOI: 10.1002/art.24145.
29. Shoham NG, Centola M, Mansfield E, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A 2003;100(23):13501-6. (In eng). DOI: 10.1073/pnas.2135380100.
30. Aksentijevich I, Zhou Q. NF-κB Pathway in Autoinflammatory Diseases: Dysregulation of Protein Modifications by Ubiquitin Defines a New Category of Autoinflammatory Diseases. Front Immunol 2017;8:399. (In eng). DOI: 10.3389/fimmu.2017.00399.
31. Wouters CH, Maes A, Foley KP, Bertin J, Rose CD. Blau Syndrome, the prototypic auto-inflammatory granulomatous disease. Pediatric Rheumatology 2014;12(1):33. DOI: 10.1186/1546-0096-12-33.
32. Kato H, Oh SW, Fujita T. RIG-I-Like Receptors and Type I Interferonopathies. J Interferon Cytokine Res 2017;37(5):207-213. (In eng). DOI: 10.1089/jir.2016.0095.
33. Ohmura K. Nakajo-Nishimura syndrome and related proteasome-associated autoinflammatory syndromes. J Inflamm Res 2019;12:259-265. (In eng). DOI: 10.2147/jir.S194098.
34. Brehm A, Liu Y, Sheikh A, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest 2015;125(11):4196-211. (In eng). DOI: 10.1172/jci81260.
35. Liu Y, Ramot Y, Torrelo A, et al. Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 2012;64(3):895-907. (In eng). DOI: 10.1002/art.33368.
36. Torrelo A. CANDLE Syndrome As a Paradigm of Proteasome-Related Autoinflammation. Front Immunol 2017;8:927. (In eng). DOI: 10.3389/fimmu.2017.00927.
37. Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 2009;360(23):2426-37. (In eng). DOI: 10.1056/NEJMoa0807865.
38. Hospach T, Glowatzki F, Blankenburg F, et al. Scoping review of biological treatment of deficiency of interleukin-36 receptor antagonist (DITRA) in children and adolescents. Pediatr Rheumatol Online J 2019;17(1):37. (In eng). DOI: 10.1186/s12969-019-0338-1.
39. Shabir O. What is CRIA syndrome? . 2020 (https://www.news-medical.net/health/What-is-CRIA-syndrome.aspx).
40. Kastner DD, Lalaoui, D. N., Boyden, D. S., & Silke, P. J. . THE GENETIC MUTATION BEHIND A NEW AUTOINFLAMMATORY DISEASE. Pursuit by The University of Melbourne 2019.
41. SyuenNg WH. VEXAS syndrome. 2021 (https://dermnetnz.org/topics/vexas-syndrome).
42. BG06: VEXAS syndrome: a case series. British Journal of Dermatology 2022;187(S1):91-91. DOI: https://doi.org/10.1111/bjd.21322.
Maalouly, M., Saade, S., & Kurban, M. (2022). Autoinflammatory diseases: what is behind them and what is new?. Dermatology Reports, 15(2). https://doi.org/10.4081/dr.2023.9625

Downloads

Download data is not yet available.

Citations