Possible relationship between poor skin disorders prognosis and serum zinc level: a narrative review
HTML: 185
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Zinc is a trace nutrient essential for the normal growth and development of human body. The main aim was to evaluate the significant association between measured zinc status in relation to different skin disorders and their severity. PubMed®, Google® Scholar™ and Cochrane© Reviews databases were searched for studies from January 2017 to June 2021, using the terms; zinc serum levels, zinc plasma levels and different dermatosis in the review, only human studies in English language were reviewed and the studies designs were controlled, cross sectional, observational and analytic types. A total of forty-eight research studies were included in this review. All studies have evaluated serum zinc in skin diseases including psoriasis, atopic dermatitis, pityriasis alba, androgenetic alopecia areata, telogen effluvium, vitiligo, melasma, acne, seborrheic dermatitis and hidradenitis suppuritiva. It was found that 33 studies had validated statistically significant differences in serum zinc levels between patients and controls. There is a predominance of low serum zinc levels in all the dermatoses reviewed. The clinical significance of this finding highlights the possible value, and need to investigate, the use of zinc supplementation as an adjuvant therapy in the management of chronic inflammatory and autoimmune skin diseases proven to manifest altered zinc levels.
Jackson M.J. Physiology of zinc: General aspects. In: Mills C.F., editor. Zinc in Human Biology. Springer; London, UK: 1989. pp. 1–14.
Michaelsson G., Ljunghall K., Danielson B.G. Zinc in epidermis and dermis in healthy subjects. Acta Derm Venereol. 1980;60:295–299.
Bel-Serrat S, Stammers AL, Warthon-Medina M, et al. EURRECA Network. Factors that affect zinc bioavailability and losses in adult and elderly populations. Nutr Rev. 2014;72:334-52.
Gibson RS, Hess SY, Hotz C, Brown KH. Indicators of zinc status at the population level: a review of the evidence. Brit J Nutr, 2008;99:S14-S23.
Hess SY, Peerson JM, King JC, Brown KH. Use of Serum Zinc Concentration as an Indicator of Population Zinc Status. Food and Nutrition Bulletin, 2007;28: S403–S429.
Gibson RS, Hess SY, Hotz C, Brown KH. Indicators of zinc status at the population level: A review of the evidence. Br J Nutr 2008;99:S14-23.
Richardson NJ. UK consumer perceptions of meat. Proc Nutr Soc. 1994;53:281-287.
Hambidge KM, Krebs NF. Zinc deficiency: a special challenge. J Nutr. 2007;137:1101–1105.
Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68:447S-463S.
Lonnerdal B. Dietary factors influencing zinc absorption. J Nutr. 2000;130:1378S-1383S
Brito-Luna MJ, Villanueva-Quintero DG, Sandoval-Talamantes AK, et al. Correlation of IL-12, IL-22, and IL-23 in patients with psoriasis and metabolic syndrome. Preliminary report. Cytokine. 2016;85:130–136.
Ergun T, Seckin Gencosmanoglu D, Karakoc-Aydiner E, et al. Prevalence of obesity in paediatric psoriasis and its impact on disease severity and progression. Australas J Dermatol. 2017;58:e182–187.
Ku SH, Kwon WJ, Cho EB, et al. The Association between psoriasis area and severity index and cardiovascular risk factor in Korean psoriasis patients. Ann Dermatol. 2016;28:360–363.
Al-Hasan AS. Correlation between Zinc and Iron with Psoriatic Patients in Al-Anbar Governorate. Annals of the Romanian Society for Cell Biology. 2021;5:3589-3597.
Rahayu T, Putra E, Diana R, Dharmawan N. Kadar Zinc Serum Penderita Psoriasis. Cermin Dunia Kedokteran, 2021;48:138-141.
Rao VM, Deepthi M, Ramalingam K, et al. Study on serum copper, zinc and selenium trace element levels in Psoriasis. Indian J Clin Exper Dermatol. 2019;5:239-242.
Gajjar M, Sirajwala HB. Serum Copper and Zinc ratio in Psoriasis. Int J Res Med. 2015; 4(3);55-59.
Aggarwal J, Singh A, Gupta S, Prasad R. Copper and zinc status in psoriasis: correlation with severity. Indian J Clin Biochem. 2021;36:120-123.
Khan F, Naeem SM, Ahmad Z, Zuberi NA. Association of serum levels of zinc and copper with degree of severity in patients with psoriasis. Journal of Saidu Medical College, 2018;7:72-75.
Solomon LM, Beerman H. Atopic dermatitis. Am J Med Sci. 1966;252:478–496.
De Benedetto A, Agnihothri R, McGirt LY, et al. Atopic dermatitis: a disease caused by innate immune defects? J Invest Dermatol. 2009;129:14–30.
Cookson W. Genetics and genomics of asthma and allergic diseases. Immunol rev. 2002;190:195-206
van den Oord RA, Sheikh A. Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta‐analysis. Brit Med J. 2009;339:2433.
Farhood IG, Ahmed MH, Al-Bandar RT, Farhood RG. Assessment of Serum Zinc Level in Patients with Atopic Dermatitis. Iraqi Journal of Medical Sciences, 2019;17:103-107.
Ehlayel MS, Bener A. Risk factors of zinc deficiency in children with atopic dermatitis. Eur Ann Allergy Clin Immunol. 2020;52:18-22.
Landiasari DA, Kawuryan DL, Hidayah D. Correlation between Serum Zinc Levels and Severity of Atopic Dermatitis. Asia Pacific J Peds Child Hlth 2020;3:114-118.
Esenboga S, Cetinkaya PG, Sahiner N, et al. Infantile atopic dermatitis: Serum vitamin D, zinc and TARC levels and their relationship with disease phenotype and severity. Allergologia et Immunopathologia. 2021;49:162-168.
Jadotte YT, Janniger CK. Pityriasis alba revisited: perspectives on an enigmatic disorder of childhood. Cutis. 2011;87:66-72.
Vinod S, Singh G, Dash K, Grover S. Clinico epidemiological study of pityriasis alba. Indian J Dermatol, Venereol Leprol. 2002;68:338-340.
Elesawy FM, Akl EM, Halim WAA. Zinc has a role in pathogenesis of pityriasis alba. Indian J Paed Dermatol. 2020;21:178-183.
Khafagy GM, Nada HR, Rashid LA, et al. Role of trace elements in pityriasis alba. J Trace Elem Med Biol. 2020;59:126422.
Severi G, Sinclair R, Hopper JL, et al. Androgenetic alopecia in men aged 40–69 years: prevalence and risk factors. Brit J Dermatol. 2003;149:1207-1213.
Marcińska M; Pośpiech E; Abidi S; et al. Evaluation of DNA Variants Associated with Androgenetic Alopecia and Their Potential to Predict Male Pattern Baldness. PLoS ONE 2015;10:e0127852.
Dhaher SA, Yacoub AA, Jacob AA. Estimation of zinc and iron levels in the serum and hair of women with androgenetic alopecia: Case–control study. Indian J Dermatol, 2018;63:369-374.
Aiempanakit K, Jandee S, Chiratikarnwong K, et al. Low plasma zinc levels in androgenetic alopecia. Indian J Dermatol, Venereol Leprol. 2017;83:741.
Kondrakhina IN, Verbenko DA, Zatevalov AM, et al. Plasma Zinc Levels in Males with Androgenetic Alopecia as Possible Predictors of the Subsequent Conservative Therapy’s Effectiveness. Diagnostics Internet 2020;10:336.
El‐Esawy FM, Hussein MS, Ibrahim Mansour A. Serum biotin and zinc in male androgenetic alopecia. Journal Cosmet Dermatol. 2019;18:1546-1549.
Gowda D, Premalatha V, Imtiyaz DB. Prevalence of Nutritional Deficiencies in Hair Loss among Indian Participants: Results of a Cross-sectional Study. Int J Trichol. 2017;9:101–104.
Kligman AM. Pathologic dynamics of human hair loss: I. Telogen effluvium. Arch Dermatol. 1961;83:175-198.
Harrison S, Sinclair R. Telogen effluvium. Clin Experiment Dermatol: Clin Dermatol. 2002;27:389-395.
Yavuz IH, Yavuz GO, Bilgili SG, et al. Assessment of heavy metal and trace element levels in patients with telogen effluvium. Indian J Dermatol. 2018;63:246–250.
Farah HS, Hajleh MNA, Shalan N, et al. The association between the levels of Ferritin, TSH, Zinc, Hb, vitamin B12, vitamin D and the hair loss among different age groups of women: A retrospective study. International J Pharmaceut Res. 2021;13:143-148.
Mohammad AP, Baba AT, Ghassemi MO. Comparison between serum levels of vitamin D and zinc in women with diffuse non-scarring hair loss (telogen effluvium) and healthy women. Pakistan J Med Hlth Sci. 2020;14:1400-1404.
Rahman F, Akhter QS. Serum zinc and copper levels in alopecia. Journal of Bangladesh Society of Physiologist. 2019;14:21-25.
Thompson JM, Mirza MA, Park MK, et al. The role of micronutrients in alopecia areata: a review. Am J Clin Dermatol. 2017;18:663-679.
Wasserman D, Guzman‐Sanchez DA, Scott K, McMichael A. Alopecia areata. Int J Dermatol. 2007;46:121-31.
Mikhael NW, Hussein MS, Mansour AI, Abdalamer RS. Evaluation of Serum Level of Zinc and Biotin in Patients with Alopecia Areata. Benha J Appl Sci. 2020;5:1-6.
Ozaydin-Yavuz G, Yavuz IH, Demir H, et al. Alopecia Areata Different View; Heavy Metals. Indian J Dermatol, 2019;64:7–11.
Sara S, Armaghan Ghareaghaji Z, Afsaneh R. Evaluating the serum zinc and vitamin D levels in alopecia areata. Iranian J Dermatol. 2018;21:77-80.
Alamoudi SM, Marghalani SM, Alajmi RS, et al. Association Between Vitamin D and Zinc Levels With Alopecia Areata Phenotypes at a Tertiary Care Center. Cureus, 2021;13:e14738.
Alkhateeb A, Fain PR, Thody A, et al. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Research. 2003;16:208-214.
Jin Y, Riccardi SL, Gowan K, et al. Fine-mapping of vitiligo susceptibility loci on chromosomes 7 and 9 and interactions with NLRP1 (NALP1). J Invest Dermatol. 2010;130:774-783
Castanet J, Ortonne JP. Pathophysiology of vitiligo. Clinics Dermatol. 1997;15:845-851.
Le Poole IC, van den Wijngaard RM, Westerhof W, Dutrieux RP, Das PK. Presence or absence of melanocytes in vitiligo lesions: an immunohistochemical investigation. J Invest Dermatol. 1993;100(6):816-822.
Saniee SS, Zare AG, RadmehrEe A, Radmehr A. Zinc, Vitamin D, and TSH Levels in Patients with Vitiligo. Erciyes Med J. 2019;41(2):148-153.
Singh CD, Gera CD. Evaluation of Zinc Levels in Patients with Vitiligo-A Clinical Study. J Adv Med Dent Sci Res. 2019;7:156-158.
Mogaddam MR, Ardabili NS, Maleki N, et al. Evaluation of the serum zinc level in patients with vitiligo. Advances in Dermatology and Allergology/Postȩpy Dermatologii i Alergologii. 2017;34:116-119.
Salem MA, El-Raheem TA, Aboraia NM. Serum Copper and zinc levels in vitiligo patients. Egyptian J Hosp Med. 2018;70:273-281.
Sanad EM, El-Fallah AA, Al-Doori AR, Salem RM. Serum Zinc and Inflammatory Cytokines in Vitiligo. J Clin Aesthet Dermatol. 2020;13:S29–S33.
Zaki AM, Nada AS, Elshahed AR, et al. Therapeutic implications of assessment of serum zinc levels in patients with vitiligo: A patient controlled prospective study. Dermatol Ther. 2020;33(6):e13998.
Mirnezami, M., Rahimi, H. Serum zinc level in vitiligo: A case-control study. Indian J Dermatol. 2018;63:227-230.
Dawson AL, Dellavalle RP. Acne vulgaris. Brit Med J. 2013;346:f2634.
Holick MF, MacLaughlin JA, Doppelt SH. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science. 1981;211:590-593.
Thiboutot D, Gollnick H, Bettoli V, et al. New insights into the management of acne: an update from the global alliance to improve outcomes in acne group. J Am Acad Dermatol. 2009;60:S1-50
Kim J, Park T, Kim HJ, et al. Inferences in microbial structural signatures of acne microbiome and mycobiome. J Microbiol. 2021;59:369-375.
Butool F, Mohammed A, Syed PA, Mohammed RA. Role of serum Zinc and Copper levels in patients with acne vulgaris. J Orofacial Res. 2019;8:71-75.
Kahssay M, Assefa B, Daba F, et al. Magnitude and associated factors of zinc deficiency among patients with acne vulgaris: a cross-sectional study. Medico Res Chron. 2017;4:481-494.
Gaber HAA, Abozied AAH, Abd-Elkareem IM, El-Shazly YNY. Serum Zinc Levels in Patients with Acne Vulgaris and Its Relation to The Severity of Disease. Egyptian J Hosp Med, 2019;75:2845-2848.
Awad SM, Morsy H, Sayed AA, et al. Oxidative stress and psychiatric morbidity in patients with facial acne. J Cosmet Dermatol. 2018;17:203–208.
Otami C, Chandra DN, Sitohang IB. Association of zinc intake & serum zinc levels with acne severity. Journal of General-Procedural Dermatology and Venereology Indonesia, 2020;4:52-57.
Atefi NS, Bazargan MD. Determination of serum levels of zinc in acne vulgaris patients: a case control study. Iranian J Dermatol. 2020;23:28-31.
Kumar GP, Priscilla T. Correlation of serum zinc levels with severity of acne vulgaris. Journal of Evolution of Medical and Dental Sciences. 2018;7:560-564.
Ikaraoha CI, Mbadiwe NC, Anyanwu CJ, et al. The Role of Blood Lead, Cadmium, Zinc and Copper in Development and Severity of Acne Vulgaris in a Nigerian Population. Biol Trace Elem Res. 2017;176:251-257.
Hurley HJ. Axillary hyperhidrosis, apocrine bromhidrosis, hidradenitis suppurativa, and familial benign pemphigus: surgical approach. In: Roenigk RK, Roenigk HH Jr, eds. Roenigk and Roenigk’s Dermatologic Surgery: Principles and Practice. 2nd ed. New York, NY: Marcel Dekker; 1996:623-645.
Wolk K, Join‐Lambert O, Sabat R. Aetiology and pathogenesis of hidradenitis suppurativa. Brit J Dermatol. 2020;183:999-1010.
Sabat R, Chanwangpong A, Schneider-Burrus S, et al., Increased prevalence of metabolic syndrome in patients with acne inversa. PloS One. 2012;7:e31810.
Poveda I, Vilarrasa E, Martorell A, et al., Serum zinc levels in hidradenitis suppurativa: A case–control study. Am J Clin Dermatol. 2018;19:771-777.
Harada K, Saito M, Sugita T, Tsuboi R. Malassezia species and their associated skin diseases. J Dermatol. 2015;42:250–257.
Bakardzhiev I, Argirov A. New insights into the etiopathogenesis of seborrheic dermatitis. Clin Res Dermatol Open Access. 2017;4:1-5.
Zohreh H, Majid S, Mohammad H. The relationship of serum selenium, zinc, and copper levels with seborrheic dermatitis: a case-control study. Iranian J Dermatol. 2019;22:7-12.
Nazik H, Bengü AŞ, Gül FÇ, et al. Evaluation of the levels of trace elements in the blood and hair of patients with seborrheic dermatitis. Trace Elements and Electrolytes. 2018;DOI 10.5414/TEX01555
Karabay EA, Cerman AA. Serum zinc levels in seborrheic dermatitis: a case-control study. Turkish J Med Sci. 2019;49:1503-1508.
Rostami Mogaddam M, Safavi Ardabili N, Iranparvar Alamdari M, et al. Evaluation of the serum zinc level in adult patients with melasma: Is there a relationship with serum zinc deficiency and melasma? J Cosmet Dermatol. 2018;17:417-422.
Abdelaziz MI, Attwa EM, Esawy AM, Khalifa N. Evaluation of the Serum Zinc Level in Adult Egyptian Patients with Melasma. Zagazig University Medical Journal. 2022;in press DOI: 10.21608/ZUMJ.2020.17857.1580
Sekarnesia IS, Sitohang IBS, Agustin T, et al. A comparison of serum zinc levels in melasma and non-melasma patients: a preliminary study of thyroid dysfunction. Acta Dermatovenerologica Alpina, Pannonica et Adriatica, 2020;29:59
Rambe PS, Simanungkalit R, Yosi A. The Relationship between Serum Zinc Level and Severity of Melasma. International Journal of Scientific and Research Publications, 2020;10:317-321.
Lei L, Su J, Chen J, et al. Abnormal serum copper and zinc levels in patients with psoriasis: A meta-analysis. Indian J Dermatol. 2019;64:224-230.
Butnaru C, Pascu M, Mircea C, et al. Serum zinc and copper levels in some dermatological diseases. Rev Med Chir Soc Med Nat Iasi. 2008;112:253–257.
Halevy S, Giryes H, Friger M, et al. The role of trace elements in psoriatic patients undergoing balneotherapy with Dead Sea bath salt. Isr Med Assoc J. 2001;3:828–832.
Cao JQ, Cui R, Zhang ZX, et al. Determination of serum trace elements in patients with psoriasis. Zhongguo Mafen Pifubing Zazhi. 2005;21:617–619.
Tasaki M, Hanada K, Hashimoto I. Analyses of serum copper and zinc levels and copper/zinc ratios in skin diseases. J Dermatol. 1993;20:21–24.
Ala S, Shokrzadeh M, Golpour M, et al. Zinc and copper levels in Iranian patients with psoriasis: A case control study. Biol Trace Elem Res. 2013;153:22–27.
Zeng Q, Yin J, Fan F, et al. Decreased copper and zinc in sera of Chinese vitiligo patients: A meta-analysis. J Dermatol. 2014;41:245–251.
Inoue Y, Hasegawa S, Ban S, et al. ZIP2 protein, a zinc transporter, is associated with keratinocyte differentiation. J Biol Chem. 2014;289:21451-21462.
Ogawa Y, Kawamura T, Shimada S. Zinc and skin biology. Arch Biochem Biophys, 2016;611:113-119.
Gray NA, Dhana A, Stein DJ, Khumalo NP. Zinc and atopic dermatitis: a systematic review and meta‐analysis. J Europ Acad Dermatol Venereol. 2019;33:1042-1050.
Maywald M, Rink L. Zinc supplementation induces CD4+ CD25+ Foxp3+ antigen-specific regulatory T cells and suppresses IFN-γ production by upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. Europ J Nutr. 2017;56:1859-1869.
Takahashi H, Nakazawa M, Takahashi K, et al. Effects of zinc deficient diet on development of atopic dermatitis-like eruptions in DS-Nh mice. J Dermatol Sci. 2008;50:31–39
Hextall B, Jenkinson C, Humphreys R. Dietary supplements for established atopic eczema. Cochrane Database Syst Rev. 2012;2:CD005205. doi: 10.1002/14651858.CD005205.pub3.
Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 1998;68:447s–463s.
Jin W, Zheng H, Shan B, Wu Y. Changes of serum trace elements level in patients with alopecia areata: a meta‐analysis. J Dermatol. 2017;44:588-591.
Thompson JM, Mirza MA, Park MK, et al. The role of micronutrients in alopecia areata: a review. Am J Clin Dermatol. 2017;18:663–679.
Kil MS, Kim CW, Kim SS. Analysis of serum zinc and copper concentrations in hair loss. Ann Dermatol. 2013;25:405–409.
Ozturk P, Kurutas E, Ataseven A, et al., BMI and levels of zinc, copper in hair, serum and urine of Turkish male patients with androgenetic alopecia. J Trace Element Med Biol. 2014;28:266–270.
Ruiz I, Altaba A. Gli proteins and Hedgehog signaling: development and cancer. Trends Genet. 1999; 15:418–425.
Karashima T, Tsuruta D, Hamada T, et al. Oral zinc therapy for zinc deficiency-related telogen effluvium. Dermatol Ther. 2012;25:210–213.
Plonka PM, Handjiski B, Popik M, et al. Zinc as an ambivalent but potent modulator of murine hair growth in vivo–preliminary observations. Experiment Dermatol. 2005;14:844-853.
Zeng Q, Yin J, Fan F, et al. Decreased copper and zinc in sera of Chinese vitiligo patients: A meta‐analysis. J Dermatol. 2014;41:245-251.
Huo J, Liu T, Huan Y, Li F, Wang R. Serum level of antioxidant vitamins and minerals in patients with vitiligo, a systematic review and meta-analysis. J Trace Element Med Biol. 2020;62:126570.
Liuzzi JP, Lichten LA, Rivera S, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Nat Acad Sci. 2005;102:6843-6848.
Wong CP, Rinaldi NA, Ho E. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Molecular Nutr Food Res. 2015;59:991-999.
Shameer P, Prasad PV, Kaviarasan PK. Serum zinc level in vitiligo: A case control study. Indian J Dermatol Venereol Leprol. 2005;71:206–207
Zhu B, Wang J, Zhou F, et al. Zinc depletion by TPEN induces apoptosis in human acute promyelocytic NB4 cells. Cell Physiol Biochem. 2017;42:1822-1836.
Yee BE, Richards P, Sui JY, Marsch AF. Serum zinc levels and efficacy of zinc treatment in acne vulgaris: A systematic review and meta‐analysis. Dermatol Ther. 2020;33:e14252.
Rostami Mogaddam M, Safavi Ardabili N, Maleki N, Soflaee M. Correlation between the severity and type of acne lesions with serum zinc levels in patients with acne vulgaris. BioMed Res Internat. 2014:474108.doi: 10.1155/2014/474108.
Tenaud I, Sainte-Marie I, Jumbou O, et al. In vitro modulation of keratinocyte wound healing integrins by zinc, copper and manganese. Brit J Dermatol. 1999;140:26-34.
Khammari A, Brocard A, Moyse D, et al. Hidradenitis suppurativa: the role of deficient cutaneous innate immunity. Arch Dermatol. 2012;148:182-186.
Jugeau S, Tenaud I, Knol AC, et al. Induction of toll‐like receptors by Propionibacterium acnes. Brit J Dermatol. 2005;153:1105-1113.
Christian P, West Jr KP. Interactions between zinc and vitamin A: an update. Am J Clin Nutr. 1998;68:435S-41S.
Brocard A, Knol AC, Khammari A, Dréno B. Hidradenitis suppurativa and zinc: a new therapeutic approach. Dermatology. 2007;214:325-327.
Hoi F, Lehmer L, Ekelem C, Mesinkovska NA. Dietary and metabolic factors in the pathogenesis of hidradenitis suppurativa: a systematic review. Internat J Dermatol. 2020;59:143-153.
Kury S, Dréno B, Bézieau S, et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 2002;31:239–240
Maxfield L, Shukla S, Crane JS. Zinc Deficiency. Updated 2021 Aug 13. In: StatPearls Internet. Treasure Island (FL): StatPearls Publishing; 2021 Jan-.Available from: https://www.ncbi.nlm.nih.gov/books/NBK493231/
Seneviratne JKK. Cutaneous manifestations of zinc deficiency in children. Sri Lanka J Child Hlth 2002;31:106-108.
Ciampo IRLD, Sawamura R, Ciampo LAD, Fernandes MIM, Acrodermatitis enteropathica: clinical manifestations and pediatric diagnosis. Revista Paulista de Pediatria, 2018;36:238-241
Van Wouwe JP. Clinical and laboratory assessment of zinc deficiency in Dutch children: a review. Biol Trace Elem Res 1995;49:211–225.
Leung AK, Leong KF, Lam JM. Acrodermatitis enteropathica in a 3-month-old boy. Canada Med Ass J 2021;193:E243.
Copyright (c) 2022 the Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.