New and emerging therapies in cutaneous T-cell lymphoma


Submitted: 27 March 2024
Accepted: 5 August 2024
Published: 2 October 2024
Abstract Views: 103
PDF: 43
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Mycosis Fungoides (MF) is the most common cutaneous T-cell lymphoma that typically presents in the early phase as inflammatory erythematous patches or plaques, with epidermotropism as the histopathological hallmark of the disease. Traditionally, in the early stages, non-aggressive options represent the first-line strategy: topical corticosteroids, phototherapy, radiotherapy and occasionally adopting a 'wait-and-see' approach for minimally symptomatic patients. In patients with advanced or recurrence disease, good results can be achieved with immune modifiers, chemotherapeutic agents, total skin irradiation or extracorporeal photochemotherapy and maintenance therapy is often required. The past decade has seen an expansion of therapies that can be used in this setting by increasing new therapeutic strategies. Herein are resumed the key advancements coming from recently published trials.


Latzka J, Assaf C, Bagot M, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome - Update 2023. Eur J Cancer 2023;195:113343.

Durán N, Song PS. Hypericin and its photodynamic action. Photochem Photobiol 1986;43:677-80. DOI: https://doi.org/10.1111/j.1751-1097.1986.tb05646.x

Blank M, Lavie G, Mandel M, et al. Antimetastatic activity of the photodynamic agent hypericin in the dark. Int J Cancer 2004;111:596-603. DOI: https://doi.org/10.1002/ijc.20285

Kamuhabwa AA, Cosserat-Gerardin I, Didelon J, et al. Biodistribution of hypericin in orthotopic transitional cell carcinoma bladder tumors: implication for whole bladder wall photodynamic therapy. Int J Cancer 2002;97:253-60. DOI: https://doi.org/10.1002/ijc.1594

Vandenbogaerde AL, Cuveele JF, Proot P, et al. Differential cytotoxic effects induced after photosensitization by hypericin. J Photochem Photobiol B 1997;38:136-42. DOI: https://doi.org/10.1016/S1011-1344(96)07446-5

Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci 2014;13:474-87. DOI: https://doi.org/10.1039/c3pp50333j

Kim EJ, Mangold AR, DeSimone JA, et al. Efficacy and Safety of Topical Hypericin Photodynamic Therapy for Early-Stage Cutaneous T-Cell Lymphoma (Mycosis Fungoides): The FLASH Phase 3 Randomized Clinical Trial. JAMA Dermatol 2022;158:1031-9. DOI: https://doi.org/10.1001/jamadermatol.2022.2749

Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet 2015;47:1011-9. DOI: https://doi.org/10.1038/ng.3356

Vaqué JP, Gómez-López G, Monsálvez V, et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood 2014;123:2034-43. DOI: https://doi.org/10.1182/blood-2013-05-504308

Ortiz-Romero PL, Maroñas Jiménez L, Muniesa C, et al. Activity and safety of topical pimecrolimus in patients with early stage mycosis fungoides (PimTo-MF): a single-arm, multicentre, phase 2 trial. Lancet Haematol 2022;9:e425-33. DOI: https://doi.org/10.1016/S2352-3026(22)00107-7

Battistella M, Leboeuf C, Ram-Wolff C, et al. KIR3DL2 expression in cutaneous T-cell lymphomas: expanding the spectrum for KIR3DL2 targeting. Blood 2017;130:2900-2. DOI: https://doi.org/10.1182/blood-2017-06-792382

Marie-Cardine A, Viaud N, Thonnart N, et al. IPH4102, a humanized KIR3DL2 antibody with potent activity against cutaneous T-cell lymphoma. Cancer Res 2014;74:6060-70. DOI: https://doi.org/10.1158/0008-5472.CAN-14-1456

Bagot M, Porcu P, Marie-Cardine A, et al. IPH4102, a first-in-class anti-KIR3DL2 monoclonal antibody, in patients with relapsed or refractory cutaneous T-cell lymphoma: an international, first-in-human, open-label, phase 1 trial. Lancet Oncol 2019;20:1160-70. DOI: https://doi.org/10.1016/S1470-2045(19)30320-1

Lai P, Wang Y. Epigenetics of cutaneous T-cell lymphoma: biomarkers and therapeutic potentials. Cancer Biol Med 2021;18:34-51. DOI: https://doi.org/10.20892/j.issn.2095-3941.2020.0216

Foss F, Advani R, Duvic M, et al. A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br J Haematol 2015;168:811-9. DOI: https://doi.org/10.1111/bjh.13222

Stadler R, Scarisbrick JJ. Maintenance therapy in patients with mycosis fungoides or Sézary syndrome: A neglected topic. Eur J Cancer 2021;142:38-47. DOI: https://doi.org/10.1016/j.ejca.2020.10.007

Chong BF, Wilson AJ, Gibson HM, et al. Immune function abnormalities in peripheral blood mononuclear cell cytokine expression differentiates stages of cutaneous T-cell lymphoma/mycosis fungoides. Clin Cancer Res 2008;14:646-53. DOI: https://doi.org/10.1158/1078-0432.CCR-07-0610

Shalabi D, Bistline A, Alpdogan O, et al. Immune evasion and current immunotherapy strategies in mycosis fungoides (MF) and Sézary syndrome (SS). Chin Clin Oncol 2019;8:11. DOI: https://doi.org/10.21037/cco.2019.01.01

Vowels BR, Lessin SR, Cassin M, et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J Invest Dermatol 1994;103:669-73. DOI: https://doi.org/10.1111/1523-1747.ep12398454

Zarour HM. Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res 2016;22:1856-64. DOI: https://doi.org/10.1158/1078-0432.CCR-15-1849

Kantekure K, Yang Y, Raghunath P, et al. Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma/mycosis fungoides. Am J Dermatopathol 2012;34:126-8. DOI: https://doi.org/10.1097/DAD.0b013e31821c35cb

Roccuzzo G, Giordano S, Fava P, et al. Immune check point inhibitors in primary cutaneous t-cell lymphomas: biologic rationale, clinical results and future perspectives. Front Oncol 2021;11:733770. DOI: https://doi.org/10.3389/fonc.2021.733770

Samimi S, Benoit B, Evans K, et al. Increased programmed death-1 expression on CD4+ T cells in cutaneous T-cell lymphoma: implications for immune suppression. Arch Dermatol 2010;146:1382-8. DOI: https://doi.org/10.1001/archdermatol.2010.200

Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 2011;350:17-37. DOI: https://doi.org/10.1007/82_2010_116

Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med 2016;8:328rv4. DOI: https://doi.org/10.1126/scitranslmed.aad7118

Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol 2014;35:51-60. DOI: https://doi.org/10.1016/j.it.2013.10.001

Quaglino P, Fava P, Pileri A, et al. Phenotypical Markers, Molecular Mutations, and Immune Microenvironment as Targets for New Treatments in Patients with Mycosis Fungoides and/or Sézary Syndrome. J Invest Dermatol 2021;141:484-95. DOI: https://doi.org/10.1016/j.jid.2020.07.026

Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol 2016;34:2698-704. DOI: https://doi.org/10.1200/JCO.2015.65.9789

Khodadoust MS, Rook AH, Porcu P, et al. Pembrolizumab in relapsed and refractory mycosis fungoides and sézary syndrome: a multicenter phase II study. J Clin Oncol 2020;38:20-8. DOI: https://doi.org/10.1200/JCO.19.01056

Marchi E, Ma H, Montanari F, et al. The Integration of PD1 Blockade With Epigenetic Therapy is Highly Active and Safe in Heavily Treated Patients With T-Cell Lymphoma (PTCL) and Cutaneous T-Cell Lymphoma (CTCL). J Clin Oncol 2020;38:8049. DOI: https://doi.org/10.1200/JCO.2020.38.15_suppl.8049

Bar-Sela G, Bergman R. Complete regression of mycosis fungoides after ipilimumab therapy for advanced melanoma. JAAD Case Rep 2015;1:99-100. DOI: https://doi.org/10.1016/j.jdcr.2015.02.009

Sekulic A, Liang WS, Tembe W, et al. Personalized treatment of Sézary syndrome by targeting a novel CTLA4:CD28 fusion. Mol Genet Genomic Med 2015;3:130-6. DOI: https://doi.org/10.1002/mgg3.121

Latzka J, Assaf C, Bagot M, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome - Update 2023. Eur J Cancer 2023;195:113343. DOI: https://doi.org/10.1016/j.ejca.2023.113343

Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009;138:286-99. DOI: https://doi.org/10.1016/j.cell.2009.05.045

Liu X, Pu Y, Cron K, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med 2015;21:1209-15. DOI: https://doi.org/10.1038/nm.3931

Ring NG, Herndler-Brandstetter D, Weiskopf K, et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Nat Acad Sci United States Am 2017;114:E10578-85. DOI: https://doi.org/10.1073/pnas.1710877114

Weiskopf K, Jahchan NS, Schnorr PJ, et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 2016;126:2610-20. DOI: https://doi.org/10.1172/JCI81603

Querfeld C, Thompson JA, Taylor MH, et al. Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or Sézary syndrome: a multicentre, phase 1 study. Lancet Haematol 2021;8:e808-17. DOI: https://doi.org/10.1016/S2352-3026(21)00271-4

ClinicalTrials.gov Identifier: NCT04541017

ClinicalTrials.gov Identifier: NCT02953509

Bullock TN, Yagita H. Induction of CD70 on dendritic cells through CD40 or TLR stimulation contributes to the development of CD8+ T cell responses in the absence of CD4+ T cells. J Immunol 2005;174:710-7. DOI: https://doi.org/10.4049/jimmunol.174.2.710

Lens SM, Baars PA, Hooibrink B, et al. Antigen-presenting cell-derived signals determine expression levels of CD70 on primed T cells. Immunology 1997;90:38-45. DOI: https://doi.org/10.1046/j.1365-2567.1997.00134.x

Wu CH, Wang L, Yang CY, et al. Targeting CD70 in cutaneous T-cell lymphoma using an antibody-drug conjugate in patient-derived xenograft models. Blood Adv 2022;6:2290-302. DOI: https://doi.org/10.1182/bloodadvances.2021005714

Roccuzzo, G., Macagno, N., Giordano, S., Fava, P., & Quaglino, P. (2024). New and emerging therapies in cutaneous T-cell lymphoma. Dermatology Reports. https://doi.org/10.4081/dr.2024.10002

Downloads

Download data is not yet available.

Citations

Similar Articles

You may also start an advanced similarity search for this article.