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Abstract 

Alzheimer's disease (AD) is the most com-
mon progressive neurodegenerative brain dis-
ease as well as the most common dementia
among the elderly. In the future as the average
lifespan continues to extend, the number of
AD patients will continue to grow. Amyloid-
beta (Aβ) peptides, in both soluble oligomeric,
and insoluble forms, are key in the neu-
ropathogenesis of AD and have thus been a
therapeutic target for vaccines. Multiple Aβ
vaccination strategies in animal models of AD
have demonstrated a marked reduction in both
amyloid burden and neurocognitive deficits.
Due to the success of these studies, initial
human clinical trials of an active Aβ vaccine
were conducted. These were discontinued due
to the development of meningoencephalitis in
approximately 6% of the vaccinated AD
patients. Studies examining the brains of Aβ-
vaccinated patients developing meningoen-
cephalitis implicate Aβ-reactive T-cell subsets
as major components of this deleterious
response to active Aβ vaccination. To subvert
possible meningoencephalitis resulting from
Aβ vaccination a second generation of vac-
cines has been more recently developed. These
however have met with little success in
humans. To build on these findings, an under-
standing of the role of T-cells in vaccination
against Aβ is presented in this review. Various
methods of Aβ immunotherapy are reviewed
including studies in both animal models and
humans. Recent works suggest that Aβ-
derived peptides delivered intranasally or tran-
scutaneously results in effective clearance of

Aβ plaques and improvement of cognitive
function in animal models of AD. Moreover,
undesired T-cell reactivity appeared to be con-
siderably reduced compared with other active
immunization strategies. In spite of the past
clinical studies, these findings imply that Aβ
vaccination may be both efficacious and safe
depending route of delivery, adjuvant choice,
and Aβ epitope administered.

Introduction

First characterized in 1907, Alzheimer’s
Disease (AD), is the most common cause of
dementia and affects 5 million people in the
United States. The prevalence of the disease
increases exponentially with advancing age.1

About 1% of persons aged 65 years have AD,
and the percentage increases to almost 50% in
persons greater than 85 years of age. In the
United States, this phenomenon is in part sec-
ondary to life expectancy increasing by some
50%, from 50 years of age in 1900, to 75 years
of age in 2000. This has resulted in a modern
threefold increase in the percentage of per-
sons over 65. The problem is worldwide howev-
er. Thus a prophylactic or curative treatment
for AD would have enormous benefits.

The cerebral amyloid beta (Aβ) protein
deposits in AD are primarily found post-
mortem in two brain regions: scattered in the
extracellular neocortex and limbic system and
in the walls of cerebral blood vessels.2 These
deposits consist of amyloid fibrils in a β-pleat-
ed sheet conformation made up of mixed poly-
mers of the 40 and 42 amino acid Aβ pep-
tides.1,3 The DNA sequence coding for Aβ is a
small portion of a larger gene encoding a
transmembrane amyloid precursor protein
(APP). APP undergoes proteolysis by two
enzyme complexes, beta (β) and gamma (γ)
secretases, to generate the Aβ peptide.4-6

Addition ally, increasing evidence supports sol-
uble oligomeric forms of Aβ, particularly
dimers as an equally, if not more, neurotoxic
species.7,8

The biology of T-cell memory in
vaccination 

An understanding of immunological memo-
ry and its relationship to an effective vaccine
against AD is a key issue in medical neuroim-
munology. Primary immunization or “priming”
causes antigen-specific T-cells to proliferate,
yielding large pools of effector T-cells which
move into peripheral tissues to combat
pathogens or proteins. A portion of these
“primed” T-cells develop into memory cells,
which provide immediate protection and the
ability to mount a faster and effective second-
ary immune response.9,10

Memory T-cells comprise at least two sub-
sets, each with distinctive migratory and effec-
tor capacities.11-13 Cells of the first subset are
somewhat similar to the effector cells generat-
ed in the primary response in that they lack
lymph node-homing receptors (L-selectin and
chemokine receptor type 7 [CCR7]) and
express receptors for migration into inflamed
tissue. Upon re-encounter with antigen, these
effector memory T-cells (TEM) quickly release
interferon-gamma (IFN-γ), Interleukin (IL)-4,
or perforin. T-cells in the second subset
express L-selectin and CCR7 as do naive T-
cells) and do not possess immediate effector
function. These central memory T-cells (TCM)
have a low activation threshold and, upon res-
timulation in secondary lymphoid organs, pro-
liferate and differentiate into effectors.12-15

Many of these T-cells are positive for CD8
(cluster of differentiation 8), a transmem-
brane glycoprotein that serves as a co-receptor
for the T-cell receptor (TCR). Importantly, the
distribution of peripheral T-cell subsets in
young and healthy elderly individuals is dis-
tinctly different, marked by decreased naïve
cells and increased clonal expansions of mem-
ory CD8+ major histocompatibility complex
(MHC) class I-restricted T-cells.16,17

As with the CD8 T-cells the differentiation
process for CD 4 (cluster of differtiation 4) T-
cells is controlled by both TCR and cytokine
stimulation.18 CD4+ T-cells have traditionally
been divided into two subsets based on their
cytokine expressing repertoire. That is, T-
helper 1 (Th1) cells are pro-inflammatory
while, T-helper 2 (Th2) cells are considered
anti-inflammatory.19 In regard to Th1 cells, pro-
longed TCR stimulation in the presence of IL
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(interleukin) -12 or IL-4 promotes terminal dif-
ferentiation to effector Th1 or Th2 cells respec-
tively. Notably, AD is marked by primarily Th1
response in the brain.20,21 A short TCR stimula-
tion period and TGF-β preserve the cells in a
central memory-like stage.14,18,22

Thus in both CD8+ and CD4+ T-cells, termi-
nal differentiation is not a necessary conse-
quence of T-cell activation. The generation of
resting intermediates that endure as central
memory cells provides the immune system
with a reserve of highly sensitive cells that can
be quickly recruited in secondary immune acti-
vation responses; thus generating large pools
of potent CD4 or CD8 effector cells.23,24 This is
important since peripheral T-cell activation
likely leads to CNS immune activation when
the blood-brain barrier (BBB) permeability
may be compromised, as in AD.25

Aβ-reactive T-cells
Recently Monsonego and colleagues,

demonstrated T-cell reactivity to the more
immunogenic peptide Aβ1-42

26 instead of Aβ1-
40.7 On the other hand, T-cells were infre-
quently stimulated by the N-terminal region 1-
28 residues. An analysis of Aβ T-cell epitopes
and their restriction to HLA (human leukocyte
antigen)-DR class II showed Aβ is processed
and presented through MHC by APCs and that
Aβ-specific T-cell proliferation is mediated
through MHC-TCR interactions. Thus, Aβ is
able to confer an adaptive immune response in
the periphery.27

There have been at least two other previous
studies in humans measuring Aβ1-40 reactive T-
cells in the peripheral circulation. The first26

reported Aβ-induced T-cell proliferation in
young and elderly controls but that these T-
cells were not present in AD patients. It was
hypothesized Aβ-reactive peripheral T-cells
were anergized in AD patients. On the other
hand, others found activation and expansion of
Aβ-reactive T-cells in the elderly and patients
with AD indicates Aβ is captured by local APCs
in the brain, and that these APCs migrate to
secondary lymph nodes; inducing T-cell activa-
tion.7 Although Aβ deposition occurs in elderly
humans that do not have overt signs of AD,
there appears to be increased T-cell reactivity
to Aβ in patients with AD, since in contrast to
elderly subjects, all patients in Monsonego and
colleagues’ study with AD had some Aβ reactiv-
ity.7 Such reactivity could reflect an endoge-
nous reaction to Aβ deposition which we
observed as local innate immune response in
AD brain post-mortem.27

Thus it could be said that some Aβ reactive
T-cell pools in the CNS (i.e. those present in
AD patients)26,27 enhance the cognitive decline
process whereas as those present in the
periphery in individuals of any age25 seem neu-
roprotective.

Animal Aβ immunization
Evidence directly linking Aβ to symptoms of

AD first came from transfecting a mutant
human APP (amyloid precursor protein) gene
from a patient with hereditary AD into the
murine genome (APP-transgenic mouse);
yielding cerebral Aβ plaques and cognitive
deficits.4 Several transgenic mouse models of
AD that express human, mutant APP genes,
alone or in combination with human, mutated
presenilin and tau genes now exist.28

Regarding vaccination strategies, Schenk
and colleagues29 first showed vaccination with
Aβ1-42 and Freund's adjuvant ameliorated β-
amyloid generation in brains of young trans-
genic mice and decreased β-amyloid in aged
mice with pre-existing AD pathology including
quantity and density of Aβ plaques in the
brain, with related improvements in neuritic
dystrophy and gliosis.29 Later, active vaccina-
tions in transgenic mice, nonhuman primates,
and other species further confirmed these
results.30-34

Passive transfer of anti- Aβ antibodies is
also able to efficiently reduce β-amyloid
pathology in animal.34-41 The vaccine-mediated
clearance of β-amyloid pathology in animal
models is reflected by the recovery of neuronal
and cytoskeletal morphology,42-44 by improve-
ment of neurotransmission,31,44,45 and45,46 and
most importantly by improved cognitive func-
tions.47-49

From animal studies, two theories (not
mutually exclusive) of the mechanisms by
which Aβ antibodies work have been devel-
oped. First, Fc-mediated uptake and clearance
of Aβ antibody complexes by microglia has
been demonstrated.50 Second, evidence of a net
efflux of Aβ peptide out of the brain and into
the serum and the cerebrospinal fluid (CSF),
as a result of its binding and mobilization by
Aβ antibodies, has been obtained.51,52

In addition to these paradigms, because pri-
marily local innate inflammation occurs in AD
brain, an immune balance by induction of spe-
cific adaptive, Th2, immune responses has
been demonstrated to be beneficial in animal
models of AD. 

Some examples of this can be seen in the lit-
erature whether investigators are exploring
immunization with forms of Aβ peptide, or by
immunization with a gene encoding Aβ. Hong-
Duck and colleagues demonstrated an aden-
ovirus encoding 11 tandem repeats of Aβ1-6

fused to the receptor-binding domain (Ia) of
Pseudomonas exotoxin A (PEDI) or AdPEDI-
(Aβ1-6)11 can induce anti-inflammatory Th2
immune response in mice. They then went on
to explore whether a DNA prime-adenovirus
boost regimen could elicit a more robust Th2
response using AdPEDI-(Aβ1-6)11 and a DNA
plasmid encoding the same antigen. All mice
administered DNA prime-adenovirus boost
regimen were positive for anti-Aβ antibody,

while, out of seven mice immunized with only
AdPEDI-(Aβ1–6)11, four mice developed anti-Aβ
antibody. The mean anti-Aβ titer induced by
the DNA prime-adenovirus boost regimen was
some7-fold greater versus the AdPEDI-(Aβ1-6)11

alone.53

Further, genetic immunization with the 
Aβ1-42 gene in AD transgenic mice effectively
elicited a humoral immune response without a
significant T-cell-mediated immune response
to the Aβ peptide.54

Additionally, papillomavirus-like particles
(VLP) have also been employed which display
Aβ1-9 protein repetitively on the capsid surface.
This peptide contains a functional B cell epi-
tope, but lacks T-cell epitopes. Rabbit and
mouse vaccinations were well tolerated and
induced high-titer antibody against Aβ, that
effectively inhibited assembly of Aβ1-42 pep-
tides into neurotoxic fibrils in vitro.55 In PSAPP
mice trends for reduced brain Aβ deposits, and
increased Aβ in plasma, suggested efflux from
the brain to periphery as well.51,52 These results
are important because the Th2 response is
salutary in the CNS in AD. 

Also to induce Th2-polarized immune
responses, some groups used other B cell epi-
topes of Aβ53 such as Aβ1-15, Th2-type adjuvants
such as IL-4,17,56,58 Alum,56,57 mannan,56 mono -
phosphoryl lipid A, cholera toxin B subunit, E.
coli enterotoxin,59 and transcutaneous60 or
mucosal vaccination.33 Thus overall it seems
immunization modalities conferring predomi-
nantly Th2 type immune responses are safer
for AD prevention and treatment.7, 52,61-63

Development of anti- Aβ vaccina-
tion in humans

An obstacle to introducing a vaccine mediat-
ed immune response in humans is that AD
patients already experience a chronic inflam-
matory process surrounding neuritic plaques.
In AD an innate immune response is triggered
by local production of Aβ protein.27 Innate
immune involvement is evident from the com-
plement proteins of the by activation of
microglia, resulting in the release of pro-
inflammatory cytokines and chemokines (for
further review see,21). Additionally, Aβ fibrils
can be modified by endogenous sugars to form
“advanced glycation endproducts” (AGEs),
which in turn activate pro-inflammatory signal
transduction pathways in which the receptor
for AGEs (RAGE), and oxygen free radicals (as
second messengers) are produced in excess.
Aβ and AGEs activate transcription factors
leading to upregulation of neurotoxic
cytokines including IL-1, IL-6 and TNF-α.64-67

The inflammatory pathology (microgliosis,
astrocytosis, complement activation, increased
cytokine expression and acute phase protein
response) is thought to be a secondary
response to early accumulation of brain Aβ. 

As in animal models, it is possible that an
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adaptive immune response accompanied by
Th2 type cytokine predominance may indicates
a “successful” response to vaccination. This
would be observed as a lack of meningoen-
cephalitis and antibodies bound to neuritic
plaques facilitating antibody mediated clear-
ance of Aβ from the brain. In this case, the
innate Aβ brain inflammation should halt after
the plaque burden has decreased, and this
should be accompanied by a stabilization, or
even recovery of cognitive function. Indeed,
accumulation of Aβ in the brain has been sug-
gested to be caused by an impaired capacity to
clear the protein in AD patients.2

Initial phase I and phase II clinical
(Elan/Wyeth AN1792) trials were conducted
with aggregated Aβ1-42 and the QS-21; a Th1
response-activating adjuvant.68,69 In the late
stages of the phase I trial polysorbate 80, an
emulsifying agent, was added to the active vac-
cine. It was at this time that immune respons-
es shifted from a predominantly Th2-polarized
response to a pro-inflammatory Th1 response69

marked by meningoencephalitis and vascular
T-lymphocyte infiltrations.70 The mechanism of
this self- reaction is unknown. However the
appearance of the inflammation prior to detec-
tion of Aβ antibodies in some of the patients
suggests a T-cell-mediated immune reaction to
Aβ, which caused bystander damage to the
brain, was at work. In the later phase II trial in
2002 by Elan and Wyeth, 18 further patients
(6% of the patients treated with the active vac-
cine) developed subacute aseptic meningoen-
cephalitis after having received mostly two
doses, and in some cases one or three of the
initially planned six doses of the active vac-
cine.71 Two participants suffered ischemic
strokes as well. The active vaccination also led
to a humoral immune response in some of the
vaccinated patients with significantly
increased IgG and IgM titers.68,72,73 These anti-
body titers were unrelated to the occurrence or
severity of meningoencephalitis.71 Further, one
individual with severe meningoencephalitis
had no detectable antibody titers suggesting
the humoral response was not required to
cause meningoencephalitis. 

Long-term follow-up of the Elan phase I/II
study cohort of actively vaccinated patients
revealed increased titers of antibodies react-
ing with brain β-amyloid plaques.74 Indeed 19
patients with serum β-amyloid plaque-reactive
antibodies showed slower cognitive decline
over a 1-year period than did nine patients who
did not develop these antibodies. Although the
cohort size was quite small, this finding sug-
gests anti-β-amyloid antibodies as protective.75

However, when all participants were analyzed,
no overall significant differences on cognitive
performance were found between the placebo
and treatment groups.72,76 This may have been
related to the relatively small decline in ADAS-
cog (Alzheimer's Disease Assessment Scale-

cognitive subscale) scores in the placebo
group.72,77

Autopsy tissues from patients who died from
unrelated causes showed patchy patterns of β-
amyloid plaque clearance associated with
increased antibody titers, with some regions
almost totally free of β-amyloid plaques70,71,78,79

In several cases, β-amyloid plaque reductions
were associated with increased brain tissue
concentrations of water and detergent-soluble
forms of Aβ,80 suggesting some biological
plaque-clearing activity of antibodies occurred
as a result of vaccination. No β-amyloid clear-
ance was observed in a single case without
detectable antibody titers.80 These results point
to biologically important effects of Aβ antibod-
ies on β-amyloid plaque pathology in AD. 

However with increasing evidence support-
ing oligomeric Aβ as the more neurotoxic
species,7,8 there may be a low therapeutic value
for clearing of already well established paren -
chymal plaques for the improvement of cogni-
tive decline in human AD patients. Prevention
or efficient clearing of toxic oligomeric Aβmay
be more effective. Because of Aβ reactivity in
AD patients,7 the use of a full-length Aβ pep-
tide, and the use of a Th1 adjuvant (QS21), it
is comprehensible how the Elan vaccination
may have caused aseptic meningoencephalitis.
Further, it is important to point out that anoth-
er potential problem with the Elan trial is that
the vaccine consisted solely of Aβ. Activation of
B cells requires T-cell help and because the
vaccine consisted solely of Aβ, the T-cell help
required for the induction of strong IgG anti-
body responses was, by necessity, directed
against Aβ itself. 

To reconcile this side effect of the human
study with all the previous animal trials not
demonstrating it, it is necessary to understand
that increased T-cell Aβ reactivity has not been
demonstrated in APP transgenic mice. This
may be secondary to their high levels of
peripheral Aβ and resulting induction of T-cell
tolerance.7 It has also been suggested the
encephalitis may also result from antigen
spreading and expansion of T-cell clones spe-
cific to myelin antigens such as myelin basic
protein. 

These combined data from the pre-clinical
experiments and the initial clinical active vac-
cination trials led to the next generation of AD
vaccines, presumably safer active vaccines
with less strong Th1-cell activating formula-
tions and with C-terminally truncated Aβ frag-
ments (since the Aβ C-terminus contains T-
cell activating epitopes). One advantage of the
second generation conjugate vaccines being
tested is that T helper epitopes are either
absent or provided by a conjugate, not Aβ.81

Several active vaccination approaches are cur-
rently tested in clinical trials (www.clinicaltri-
als.gov) at the time of this review including
the Merck V950 trial, the Novartis/Cytos CAD-

106 trial using a VLP-linked N-terminal Aβ
peptide fragment, as well as the Affiris Affitope
AD01 and AD02 active vaccination trials with
Aβ peptide mimetics. The Elan/Wyeth ACC-001
phase II active vaccination trial with an N-ter-
minal Aβ peptide fragment conjugated to a car-
rier protein was suspended due to transient
skin lesions in one patient in the study. 

Efforts are underway to determine the basis
for the adverse inflammatory reaction seen in
the first generation of AD vaccines, and to
model it in animals. In this regard, we devel-
oped a transcutaneous (t.c.) active Aβ vaccina-
tion in a transgenic mouse model of AD.
PSAPP mice showed high Aβ antibody titers.
Most importantly, t.c. immunization with Aβ1-42

plus a cholera toxin (CT) adjuvant resulted in
significant decreases in cerebral Aβ1-40,42 levels
coincident with increased circulating levels of
Aβ1-40,42 suggesting brain-to-blood efflux of the
peptide. Importantly there was no brain T-cell
infiltration or cerebral microhemorrhage.60

Other groups have also found no abnormal
effects in APP transgenic mouse models to
which Aβ antibodies have been administered,
and such mice have shown robust behavioral
improvements and clearing of brain Aβ
deposits.34,82 It is important to consider howev-
er, that the antibody response in mice is elicit-
ed against the human form of Aβ, which has
an amino acid sequence that differs from the
mouse form. Thus, production of high titer
antibodies against the non-functional human
Aβ are observed60,83 while limiting the humoral
and cell-mediated response against the endo -
genous mouse Aβ sequence. Therefore, the
autoimmune response in mice is less likely to
confer collateral damage by targeting function-
ally important APP and soluble Aβ.84 It should
also be noted that a number of other groups
have shown that passive vaccination increases
the degree of cerebral amyloid angiopathy and
associated microbleeds.38,41,85,86 Salloway and
colleagues (2009) explored vaccination of
Bapineuzumab, a humanized anti- Aβ mono-
clonal antibody, as a potential passive vaccine
strategy in a multiple ascending dose, safety,
and efficacy study in mild to moderate AD
(N=234). Patients received 6 antibody infu-
sions, 13 weeks apart, with final assessments
(via ADAS-Cog) at week 78.  Primary efficacy
outcomes in this phase 2 trial were not signif-
icant and six vasogenic edema patients experi-
enced transient symptoms.87

Th2 memory effector cells are a requirement
for antibody production but in the elderly, the
predominant T-cell population is Th1 cells,
which generate the proinflammatory cytokines
when stimulated by Aβ vaccination. We and
others hypothesize this predisposes individu-
als to develop AD as well as other age related
diseases.88-91 Indeed in the elderly the Aβ-spe-
cific T-cell clones are composed largely of CD8-
positive cytotoxic T-cells, which can lyse cells
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presenting the Aβ sequence.92 Thus any
increase in T-cell mediated neuroinflamma-
tion from vaccination runs the risk of acceler-
ating neuronal loss in AD patients who are
already have a low threshold for CNS damage
due to the high levels of oxidative stress and
inflammation.93,94 A further complication
relates to a difficulty in being able to limit the
inflammatory response to the insoluble Aβ in
plaques while sparing soluble Aβ monomers,
the parent protein [amyloid precursor protein
(APP)] and neurotrophic APP fragments84 such
as s-APPα.95

In further relation to the possible toxicity of
vaccinations, the majority of the Aβ epitope is
localized to the extracellular portion of APP. As
such, antibodies to Aβ might recognize native
cell surface APP, leading to complement activa-
tion, subsequent opsonisation, and brain cell
injury or death. Importantly, self-reactive T-
cells of low-to-moderate binding affinity are
not all automatically deleted during negative
selection in the thymus.96,97 Indeed a portion of
autoreactive T-cells undergo positive selection
and maintain the normal immune repertoire.98

Moreover, although the CNS is known as
immunologically privileged, activated T-cells
can routinely penetrate the BBB.99-101

Conversely, Th2 cytokine promoting or pro-
ducing cells may have salutary regulatory prop-
erties. Aβ administered intranasally to APP
transgenic mice induced anti-Aβ antibodies
and partial clearance of Aβ plaques. This was
in conjunction with infiltration into the CNS of
small numbers of mononuclear cells express-
ing anti-inflammatory Th2 cytokines IL-4, IL-
10, and TGF-β.33 Interestingly, nearly all human
Aβ-reactive T-cell lines showed a Th2 pheno-
type. Thus it is possible mucosal immunization
could boost this lineage, enhancing clearance
of Aβ by both stimulating Aβ antibody produc-
tion and modulating microglial activation at
sites of Aβ plaques, with a minimal risk of
harmful T-cell responses in the CNS. Further,
overexpression of Th-2 cytokine TGF-β in the
CNS of APP transgenic mice resulted in a sig-
nificant reduction of Aβ plaques via promotion
of microglial clearance of the peptide.102

Taken together, both human and animal
findings imply that Aβ vaccination may be both
efficacious and safe provided the route of
delivery, adjuvant choice, and Aβ epitope
choice are properly combined to avoid deleteri-
ous T-cell activation in the CNS.
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