The first detection of a population of Aedes aegypti in the Atlantic Forest in the state of Rio de Janeiro, Brazil

Submitted: 14 May 2020
Accepted: 2 October 2020
Published: 28 October 2020
Abstract Views: 1545
PDF: 692
HTML: 17
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Aedes aegypti is almost completely restricted to human-modified environments, especially urban areas, and rarely invades forests. Ovitraps were utilized in a reserve (Bom Retiro) in Rio de Janeiro state. Eggs of A. aegypti, genetically not differentiable from those of urban mosquitoes, were obtained at a location more than 700 m inside the border of the forest and 900 m away from a trail at the entrance to the forest. The presence of A. aegypti in a primary forest indicates its ability to adapt to sylvatic environments in Brazil, suggesting great potential for the transmission of several arboviruses due to the difficulty in controlling these mosquitoes.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Altschul SF, Gish W, Miller W, Myers EW, Lipman, DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology. 215: 4034–10. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
Consoli RAGB, Lourenço-de-Oliveira R. 1993. Principais mosquitos de importância médica no Brasil. Fiocruz, Rio de Janeiro. 228pp. DOI: https://doi.org/10.7476/9788575412909
Hebert PDN, Cywinska A, Ball SL, Waard JR. 2003. Biological identifications through DNA barcodes, Proceedings of the Royal Society B: Biological Sciences. 270 (11512):313–321.
Huber K, Ba Y, Dia I, Mathiot C, Sall AA, Diallo M. 2008. Aedes aegypti in Senegal: genetic diversity and genetic structure of domestic and sylvatic populations. American Journal of Tropical Medicine Hygiene. 79: 2182–29. DOI: https://doi.org/10.4269/ajtmh.2008.79.218
Lourenço-de-Oliveira R, Castro MG, Braks MAH, Lounibos LP. 2004. The invasion of urban forest by dengue vectors in Rio de Janeiro. Journal of Vector Ecology. 29: 94–100.
Mangudo C, Aparicio JP, Gleiser RM. 2015. Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area. Bulletin of Entomological Research. 105: 679–684.
Marcondes CB, Alencar J. 2010. Revisão de mosquitos Haemagogus Williston (Diptera: Culicidae) do Brasil. Revista Biomedica. 21: 221–238.
Marcondes CB, Tauil, PL. 2011. Sylvatic dengue: should we be worried? Revista da Sociedade Brasileira de Medicina Tropical. 44: 263–264. DOI: https://doi.org/10.1590/S0037-86822011000200029
Marcondes CB, Ximenes MFFM. 2016. Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicina Tropical. 49: 4–10. DOI: https://doi.org/10.1590/0037-8682-0220-2015
Massad E, Burattini MN, Coutinho FAB, Lopez LF. 2003. Dengue e risco da reintrodução da febre amarela urbana no Estado de São Paulo. Revista de Saúde Pública. 37: 477–484. DOI: https://doi.org/10.1590/S0034-89102003000400013
Rozas J, Sánches-Delbarrio JC, Messeguer X, Rozas R. 2003. Dna SP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 19: 2496–2497.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. 28: 2731-2739.
Vasconcelos PF. 2003. Febre amarela. Revista da Sociedade Brasileira de Medicina Tropical. 36: 275–293. DOI: https://doi.org/10.1590/S0037-86822003000200012
Verdonschot PFM, Besse-Lototskaya A. 2012. Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica. Ecology and Management of Inland waters. 45: 69–79. DOI: https://doi.org/10.1016/j.limno.2013.11.002
Zhao L, Pridgeon JW, Becnel JJ, Clark GG, Linthicum KJ. 2009. Mitochondrial gene Cytochrome b developmental and environmental expression in Aedes aegypti (Diptera: Culicidae). Journal of Medicinal Entomology. 46: 1361–1369. DOI: https://doi.org/10.1603/033.046.0615

Supporting Agencies

Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ (26/010.001630/2014; E-26/202.819/2015) and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (301345/2013-9).

How to Cite

Alencar, J., de Mello, C. F. ., Guimarães, A. Érico ., Maia, D. de A. ., Balbino, V. de Q. ., Freitas, M. T. de S. ., & Marcondes, C. B. . (2020). The first detection of a population of <em>Aedes aegypti</em> in the Atlantic Forest in the state of Rio de Janeiro, Brazil. Tropical Zoology, 33(2). https://doi.org/10.4081/tz.2020.70